# Overview [8-bit optimizers](https://hf.co/papers/2110.02861) reduce the memory footprint of 32-bit optimizers without any performance degradation which means you can train large models with many parameters faster. At the core of 8-bit optimizers is block-wise quantization which enables quantization accuracy, computational efficiency, and stability. bitsandbytes provides 8-bit optimizers through the base [`Optimizer8bit`] class, and additionally provides [`Optimizer2State`] and [`Optimizer1State`] for 2-state (for example, [`Adam`]) and 1-state (for example, [`Adagrad`]) optimizers respectively. To provide custom optimizer hyperparameters, use the [`GlobalOptimManager`] class to configure the optimizer. ## Optimizer8bit [[autodoc]] bitsandbytes.optim.optimizer.Optimizer8bit - __init__ ## Optimizer2State [[autodoc]] bitsandbytes.optim.optimizer.Optimizer2State - __init__ ## Optimizer1State [[autodoc]] bitsandbytes.optim.optimizer.Optimizer1State - __init__ ## Utilities [[autodoc]] bitsandbytes.optim.optimizer.GlobalOptimManager