Unverified Commit f0ec93d0 authored by Tim Dettmers's avatar Tim Dettmers Committed by GitHub
Browse files

Merge pull request #76 from tomaarsen/cleanup

Cleanup involving a handful of failures, some optimization and a lot of code quality improvements
parents c059bd28 c91f592a
......@@ -12,13 +12,13 @@ import torch
import bitsandbytes.functional as F
class MockArgs(object):
class MockArgs:
def __init__(self, initial_data):
for key in initial_data:
setattr(self, key, initial_data[key])
class GlobalOptimManager(object):
class GlobalOptimManager:
_instance = None
def __init__(self):
......@@ -56,9 +56,9 @@ class GlobalOptimManager(object):
"""
Overrides initial optimizer config for specific parameters.
The key-values of the optimizer config for the input parameters are overidden
The key-values of the optimizer config for the input parameters are overridden
This can be both, optimizer parameters like "betas", or "lr" or it can be
8-bit specific paramters like "optim_bits", "percentile_clipping".
8-bit specific parameters like "optim_bits", "percentile_clipping".
Parameters
----------
......@@ -93,13 +93,12 @@ class GlobalOptimManager(object):
class Optimizer8bit(torch.optim.Optimizer):
def __init__(self, params, defaults, optim_bits=32):
super(Optimizer8bit, self).__init__(params, defaults)
super().__init__(params, defaults)
self.initialized = False
self.name2qmap = {}
self.mng = GlobalOptimManager.get_instance()
self.non_castable_tensor_keys = set(
[
self.non_castable_tensor_keys = {
"qmap1",
"qmap2",
"max1",
......@@ -112,8 +111,7 @@ class Optimizer8bit(torch.optim.Optimizer):
"absmax1",
"absmax2",
"unorm_vec",
]
)
}
if optim_bits == 8:
self.fill_qmap()
......@@ -123,7 +121,7 @@ class Optimizer8bit(torch.optim.Optimizer):
self.name2qmap["udynamic"] = F.create_dynamic_map(signed=False)
def __setstate__(self, state):
super(Optimizer8bit, self).__setstate__(state)
super().__setstate__(state)
def load_state_dict(self, state_dict):
r"""Loads the optimizer state.
......@@ -155,8 +153,8 @@ class Optimizer8bit(torch.optim.Optimizer):
id_map = {
old_id: p
for old_id, p in zip(
chain.from_iterable((g["params"] for g in saved_groups)),
chain.from_iterable((g["params"] for g in groups)),
chain.from_iterable(g["params"] for g in saved_groups),
chain.from_iterable(g["params"] for g in groups),
)
}
......@@ -284,11 +282,11 @@ class Optimizer8bit(torch.optim.Optimizer):
return config
def init_state(self, group, p, gindex, pindex):
raise NotImplementedError(f"init_state method needs to be overidden")
raise NotImplementedError("init_state method needs to be overridden")
def update_step(self, group, p, gindex, pindex):
raise NotImplementedError(
f"The update_step method needs to be overidden"
"The update_step method needs to be overridden"
)
......@@ -310,9 +308,9 @@ class Optimizer2State(Optimizer8bit):
skip_zeros=False,
):
if not 0.0 <= lr:
raise ValueError("Invalid learning rate: {}".format(lr))
raise ValueError(f"Invalid learning rate: {lr}")
if not 0.0 <= eps:
raise ValueError("Invalid epsilon value: {}".format(eps))
raise ValueError(f"Invalid epsilon value: {eps}")
if isinstance(betas, str):
# format: '(beta1, beta2)'
betas = betas.replace("(", "").replace(")", "").strip().split(",")
......@@ -324,10 +322,10 @@ class Optimizer2State(Optimizer8bit):
)
if not 0.0 <= weight_decay:
raise ValueError(
"Invalid weight_decay value: {}".format(weight_decay)
f"Invalid weight_decay value: {weight_decay}"
)
defaults = dict(lr=lr, betas=betas, eps=eps, weight_decay=weight_decay)
super(Optimizer2State, self).__init__(params, defaults, optim_bits)
super().__init__(params, defaults, optim_bits)
if args is None:
args = {}
......@@ -542,9 +540,9 @@ class Optimizer1State(Optimizer8bit):
skip_zeros=False,
):
if not 0.0 <= lr:
raise ValueError("Invalid learning rate: {}".format(lr))
raise ValueError(f"Invalid learning rate: {lr}")
if not 0.0 <= eps:
raise ValueError("Invalid epsilon value: {}".format(eps))
raise ValueError(f"Invalid epsilon value: {eps}")
for i in range(len(betas)):
if not 0.0 <= betas[i] < 1.0:
raise ValueError(
......@@ -552,10 +550,10 @@ class Optimizer1State(Optimizer8bit):
)
if not 0.0 <= weight_decay:
raise ValueError(
"Invalid weight_decay value: {}".format(weight_decay)
f"Invalid weight_decay value: {weight_decay}"
)
defaults = dict(lr=lr, betas=betas, eps=eps, weight_decay=weight_decay)
super(Optimizer1State, self).__init__(params, defaults, optim_bits)
super().__init__(params, defaults, optim_bits)
if args is None:
args = {}
......
......@@ -23,11 +23,11 @@ class RMSprop(Optimizer1State):
):
if alpha == 0:
raise NotImplementedError(
f"RMSprop with alpha==0.0 is not supported!"
"RMSprop with alpha==0.0 is not supported!"
)
if centered:
raise NotImplementedError(f"Centered RMSprop is not supported!")
super(RMSprop, self).__init__(
raise NotImplementedError("Centered RMSprop is not supported!")
super().__init__(
"rmsprop",
params,
lr,
......@@ -59,11 +59,11 @@ class RMSprop8bit(Optimizer1State):
):
if alpha == 0:
raise NotImplementedError(
f"RMSprop with alpha==0.0 is not supported!"
"RMSprop with alpha==0.0 is not supported!"
)
if centered:
raise NotImplementedError(f"Centered RMSprop is not supported!")
super(RMSprop8bit, self).__init__(
raise NotImplementedError("Centered RMSprop is not supported!")
super().__init__(
"rmsprop",
params,
lr,
......@@ -96,11 +96,11 @@ class RMSprop32bit(Optimizer1State):
if alpha == 0:
raise NotImplementedError(
f"RMSprop with alpha==0.0 is not supported!"
"RMSprop with alpha==0.0 is not supported!"
)
if centered:
raise NotImplementedError(f"Centered RMSprop is not supported!")
super(RMSprop32bit, self).__init__(
raise NotImplementedError("Centered RMSprop is not supported!")
super().__init__(
"rmsprop",
params,
lr,
......
......@@ -21,8 +21,8 @@ class SGD(Optimizer1State):
block_wise=True,
):
if momentum == 0:
raise NotImplementedError(f"SGD without momentum is not supported!")
super(SGD, self).__init__(
raise NotImplementedError("SGD without momentum is not supported!")
super().__init__(
"momentum",
params,
lr,
......@@ -52,8 +52,8 @@ class SGD8bit(Optimizer1State):
block_wise=True,
):
if momentum == 0:
raise NotImplementedError(f"SGD without momentum is not supported!")
super(SGD8bit, self).__init__(
raise NotImplementedError("SGD without momentum is not supported!")
super().__init__(
"momentum",
params,
lr,
......@@ -83,8 +83,8 @@ class SGD32bit(Optimizer1State):
block_wise=True,
):
if momentum == 0:
raise NotImplementedError(f"SGD without momentum is not supported!")
super(SGD32bit, self).__init__(
raise NotImplementedError("SGD without momentum is not supported!")
super().__init__(
"momentum",
params,
lr,
......
......@@ -4,7 +4,7 @@ Basic steps.
1. `make [target]` where `[target]` is among `cuda92, cuda10x, cuda110, cuda11x, cpuonly`
2. `CUDA_VERSION=XXX python setup.py install`
To run these steps you will need to have the nvcc compiler installed that comes with a CUDA installation. If you use anaconda (recommended) then you can figure out which version of CUDA you are using with PyTorch via the command `conda list | grep cudatoolkit`. Then you can install the nvcc compiler by downloading and installing the same CUDA version from the [CUDA toolkit archive](https://developer.nvidia.com/cuda-toolkit-archive).
To run these steps you will need to have the nvcc compiler installed that comes with a CUDA installation. If you use anaconda (recommended) then you can figure out which version of CUDA you are using with PyTorch via the command `conda list | grep cudatoolkit`. Then you can install the nvcc compiler by downloading and installing the same CUDA version from the [CUDA toolkit archive](https://developer.nvidia.com/cuda-toolkit-archive).
For your convenience, there is an installation script in the root directory that installs CUDA 11.1 locally and configures it automatically. After installing you should add the `bin` sub-directory to the `$PATH` variable to make the compiler visible to your system. To do this you can add this to your `.bashrc` by executing these commands:
```bash
......@@ -13,7 +13,7 @@ echo "export PATH=$PATH:/usr/local/cuda/bin/" >> ~/.bashrc
source ~/.bashrc
```
By default, the Makefile will look at your `CUDA_HOME` environmental variable to find your CUDA version for compiling the library. If this path is not set it is inferred from the path of your `nvcc` compiler.
By default, the Makefile will look at your `CUDA_HOME` environmental variable to find your CUDA version for compiling the library. If this path is not set it is inferred from the path of your `nvcc` compiler.
Either `nvcc` needs to be in path for the `CUDA_HOME` variable needs to be set to the CUDA directory root (e.g. `/usr/local/cuda`) in order for compilation to succeed
......
......@@ -62,7 +62,7 @@ void quantize_cpu(float *code, float *A, float *absmax, unsigned char *out, long
for (int i = 0; i < valid_chunks; i++)
int err = pthread_join(threads[i], NULL);
free(threads);
for (int i = 0; i < valid_chunks; i++)
free(args[i]);
......
// Copyright (c) Facebook, Inc. and its affiliates.
//
// This source code is licensed under the MIT license found in the
// Copyright (c) Facebook, Inc. and its affiliates.
//
// This source code is licensed under the MIT license found in the
// LICENSE file in the root directory of this source tree.
#include <kernels.cuh>
......@@ -303,7 +303,7 @@ __global__ void kCompressMax(T * __restrict__ const A, T* out, unsigned char* ou
if(threadIdx.x % 32 < 8)
{
// offset: 8 values per 256 input values
//
//
int offset = BLOCK_SIZE*blockIdx.x*BLOCK_SIZE/32*8;
}
......@@ -574,7 +574,7 @@ __global__ void kDequantize(float *code, unsigned char *A, float *out, const int
template<typename T, int OPTIMIZER, int BLOCK_SIZE, int NUM_VALS>
__launch_bounds__(BLOCK_SIZE/NUM_VALS, 1)
__global__ void kPreconditionOptimizer32bit2State(T* g, T* p,
__global__ void kPreconditionOptimizer32bit2State(T* g, T* p,
float* state1, float* state2, float *unorm,
const float beta1, const float beta2, const float eps, const float weight_decay,
const int step, const float lr, const float gnorm_scale, const int n)
......@@ -622,7 +622,7 @@ __global__ void kPreconditionOptimizer32bit2State(T* g, T* p,
{
switch(OPTIMIZER)
{
case ADAM:
case ADAM:
s1_vals[j] = s1_vals[j]*beta1 + ((1.0f -beta1)*((float)g_vals[j]));
s2_vals[j] = s2_vals[j]*beta2 + ((1.0f -beta2)*(((float)g_vals[j])*((float)g_vals[j])));
s1_vals[j] *= correction1;
......@@ -653,7 +653,7 @@ __global__ void kPreconditionOptimizer32bit2State(T* g, T* p,
template<typename T, int OPTIMIZER>
__launch_bounds__(TH, 1)
__global__ void kOptimizer32bit2State(T* g, T* p,
__global__ void kOptimizer32bit2State(T* g, T* p,
float* state1, float* state2, float *unorm, const float max_unorm, const float param_norm,
const float beta1, const float beta2, const float eps, const float weight_decay,
const int step, const float lr, const float gnorm_scale, const bool skip_zeros, const int n)
......@@ -716,7 +716,7 @@ __global__ void kOptimizer32bit2State(T* g, T* p,
{
switch(OPTIMIZER)
{
case ADAM:
case ADAM:
if(!skip_zeros || (skip_zeros && ((float)g_vals[j] != 0.0f)))
{
s1_vals[j] = s1_vals[j]*beta1 + ((1.0f -beta1)*((float)g_vals[j]));
......@@ -741,7 +741,7 @@ __global__ void kOptimizer32bit2State(T* g, T* p,
template<typename T, int OPTIMIZER, int BLOCK_SIZE, int NUM_VALS>
__launch_bounds__(BLOCK_SIZE/NUM_VALS, 1)
__global__ void kPreconditionOptimizer32bit1State(T* g, T* p,
__global__ void kPreconditionOptimizer32bit1State(T* g, T* p,
float* state1, float *unorm,
const float beta1, const float eps, const float weight_decay,
const int step, const float lr, const float gnorm_scale, const int n)
......@@ -783,19 +783,19 @@ __global__ void kPreconditionOptimizer32bit1State(T* g, T* p,
{
switch(OPTIMIZER)
{
case MOMENTUM:
case MOMENTUM:
if(step == 1)
s1_vals[j] = (float)g_vals[j]; // state update
else
s1_vals[j] = s1_vals[j]*beta1 + ((float)g_vals[j]); // state update
s1_vals[j] = s1_vals[j]*s1_vals[j]; // update norm
break;
case RMSPROP:
case RMSPROP:
s1_vals[j] = s1_vals[j]*beta1 + ((1.0f-beta1)*((float)g_vals[j])*((float)g_vals[j])); // state update
s1_vals[j] = __fdividef((float)g_vals[j],sqrtf(s1_vals[j])+eps); // update value
s1_vals[j] = s1_vals[j]*s1_vals[j]; // update norm
break;
case ADAGRAD:
case ADAGRAD:
s1_vals[j] = s1_vals[j] + ((float)g_vals[j])*((float)g_vals[j]); // state update
s1_vals[j] = __fdividef((float)g_vals[j],sqrtf(s1_vals[j])+eps); // update value
s1_vals[j] = s1_vals[j]*s1_vals[j]; // update norm
......@@ -819,7 +819,7 @@ __global__ void kPreconditionOptimizer32bit1State(T* g, T* p,
template<typename T, int OPTIMIZER>
__launch_bounds__(TH, 1)
__global__ void kOptimizer32bit1State(T *g, T *p,
__global__ void kOptimizer32bit1State(T *g, T *p,
float *state1, float *unorm, const float max_unorm, const float param_norm,
const float beta1, const float eps, const float weight_decay,
const int step, const float lr, const float gnorm_scale, const bool skip_zeros, const int n)
......@@ -882,7 +882,7 @@ __global__ void kOptimizer32bit1State(T *g, T *p,
{
switch(OPTIMIZER)
{
case MOMENTUM:
case MOMENTUM:
if(step == 1)
s1_vals[j] = (float)g_vals[j];
else
......@@ -890,11 +890,11 @@ __global__ void kOptimizer32bit1State(T *g, T *p,
p_vals[j] = ((float)p_vals[j]) + update_scale*(-lr*(s1_vals[j]));
break;
case RMSPROP:
case RMSPROP:
s1_vals[j] = s1_vals[j]*beta1 + ((1.0f-beta1)*((float)g_vals[j])*((float)g_vals[j]));
p_vals[j] = ((float)p_vals[j]) - update_scale*(lr*__fdividef((float)g_vals[j],sqrtf((float)s1_vals[j])+eps));
break;
case ADAGRAD:
case ADAGRAD:
s1_vals[j] = s1_vals[j] + ((float)g_vals[j])*((float)g_vals[j]);
p_vals[j] = ((float)p_vals[j]) - lr*__fdividef((float)g_vals[j],sqrtf((float)s1_vals[j])+eps);
break;
......@@ -1156,12 +1156,12 @@ kOptimizerStatic8bit2State(T* p, T* const g, unsigned char* state1, unsigned cha
template<typename T, int OPTIMIZER>
__global__ void
__launch_bounds__(NUM_THREADS, 2)
kPreconditionOptimizerStatic8bit1State(T* p, T* __restrict__ const g, unsigned char*__restrict__ const state1,
kPreconditionOptimizerStatic8bit1State(T* p, T* __restrict__ const g, unsigned char*__restrict__ const state1,
float *unorm,
const float beta1,
const float beta1,
const float eps, const int step,
float* __restrict__ const quantiles1,
float* max1, float* new_max1,
float* __restrict__ const quantiles1,
float* max1, float* new_max1,
const float weight_decay,
const float gnorm_scale, const int n)
{
......@@ -1211,7 +1211,7 @@ kPreconditionOptimizerStatic8bit1State(T* p, T* __restrict__ const g, unsigned c
s1_vals[j] = smem_quantiles1[m_c1[j]]*max1[0];
switch(OPTIMIZER)
{
case MOMENTUM:
case MOMENTUM:
if(step == 1)
s1_vals[j] = (float)g_vals[j];
else
......@@ -1219,7 +1219,7 @@ kPreconditionOptimizerStatic8bit1State(T* p, T* __restrict__ const g, unsigned c
if(unorm != NULL)
local_unorm += s1_vals[j]*s1_vals[j];
break;
case RMSPROP:
case RMSPROP:
s1_vals[j] = s1_vals[j]*beta1 + ((1.0f-beta1)*(g_val*g_val));
break;
}
......@@ -1244,10 +1244,10 @@ template<typename T, int OPTIMIZER>
__global__ void
kOptimizerStatic8bit1State(T* p, T* const g, unsigned char* state1,
const float *unorm, const float max_unorm, const float param_norm,
const float beta1,
const float beta1,
const float eps, const int step, const float lr,
float* __restrict__ const quantiles1,
float* max1, float* new_max1,
float* __restrict__ const quantiles1,
float* max1, float* new_max1,
float weight_decay,
const float gnorm_scale, const int n)
{
......@@ -1313,7 +1313,7 @@ kOptimizerStatic8bit1State(T* p, T* const g, unsigned char* state1,
switch(OPTIMIZER)
{
case MOMENTUM:
case MOMENTUM:
if(step == 1)
s1_vals[j] = g_vals[j];
else
......@@ -1321,7 +1321,7 @@ kOptimizerStatic8bit1State(T* p, T* const g, unsigned char* state1,
p_vals[j] = ((float)p_vals[j]) + (-lr*update_scale*(s1_vals[j]));
break;
case RMSPROP:
case RMSPROP:
s1_vals[j] = s1_vals[j]*beta1 + ((1.0f-beta1)*(g_val*g_val));
p_vals[j] = ((float)p_vals[j]) - (lr*__fdividef(g_val,sqrtf(s1_vals[j])+eps));
break;
......@@ -1401,7 +1401,7 @@ kOptimizerStatic8bit2StateBlockwise(T* p, T* __restrict__ const g, unsigned char
const float beta1, const float beta2,
const float eps, const int step, const float lr,
float* __restrict__ const quantiles1, float* __restrict__ const quantiles2,
float* absmax1, float* absmax2,
float* absmax1, float* absmax2,
float weight_decay,
const float gnorm_scale, const bool skip_zeros, const int n)
{
......@@ -1545,7 +1545,7 @@ kOptimizerStatic8bit2StateBlockwise(T* p, T* __restrict__ const g, unsigned char
StoreT(temp_storage.storeh).Store(&(p[i]), g_vals, valid_items);
// quantizaztion: 2.67/1.70 -> 3.4/3.3
# pragma unroll N_PER_TH
# pragma unroll N_PER_TH
for(unsigned int j = 0; j < N_PER_TH; j++)
{
c1s[j] = quantize_2D<1>(quadrants1, smem_quantiles1[lane_id], __fdividef(s1_vals[j],new_local_abs_max1));
......@@ -1658,16 +1658,16 @@ kOptimizerStatic8bit1StateBlockwise(T* p, T* __restrict__ const g, unsigned char
switch(OPTIMIZER)
{
case MOMENTUM:
case MOMENTUM:
if(step == 1)
s1_vals[j] = g_val;
else
s1_vals[j] = (s1_vals[j]*beta1) + g_val;
break;
case RMSPROP:
case RMSPROP:
s1_vals[j] = s1_vals[j]*beta1 + ((1.0f-beta1)*(g_val*g_val));
break;
case ADAGRAD:
case ADAGRAD:
s1_vals[j] = s1_vals[j] + (g_val*g_val);
break;
}
......@@ -1698,14 +1698,14 @@ kOptimizerStatic8bit1StateBlockwise(T* p, T* __restrict__ const g, unsigned char
{
switch(OPTIMIZER)
{
case MOMENTUM:
case MOMENTUM:
p_vals[j] = ((float)p_vals[j]) - lr*(s1_vals[j]);
break;
case RMSPROP:
case RMSPROP:
g_val = g_vals[j];
p_vals[j] = ((float)p_vals[j]) - lr*(__fdividef(g_val, sqrtf(s1_vals[j])+eps));
break;
case ADAGRAD:
case ADAGRAD:
g_val = g_vals[j];
p_vals[j] = ((float)p_vals[j]) - lr*(__fdividef(g_val, sqrtf(s1_vals[j])+eps));
break;
......@@ -1718,7 +1718,7 @@ kOptimizerStatic8bit1StateBlockwise(T* p, T* __restrict__ const g, unsigned char
StoreT(temp_storage.storeh).Store(&(p[i]), p_vals, valid_items);
// quantizaztion: 2.67/1.70 -> 3.4/3.3
# pragma unroll N_PER_TH
# pragma unroll N_PER_TH
for(unsigned int j = 0; j < N_PER_TH; j++)
{
c1s[j] = quantize_2D<1>(quadrants1, smem_quantiles1[lane_id], __fdividef(s1_vals[j],new_local_abs_max1));
......@@ -1895,9 +1895,9 @@ template <int ITEMS_PER_THREAD, int SUBTILE_ROWS, int THREADS>__global__ void kd
{
// Strategy: To dequantize we need to load col/row statistics. This can be very expensive
// since different row/col stats need to be loaded with each thread.
// since different row/col stats need to be loaded with each thread.
// (1, bad algorithm) Loading 32 items per thread would only occur 1 row load, but this increases register pressure
// and would lead to low global load utilization.
// and would lead to low global load utilization.
// (2, bad algorithm) If each thread loads some columns and multiple rows one needs to do lot of row loads
// for each thread and this is duplicated by a factor of 32/num-cols-per-thread.
// (3, good algorithm) Combining (1) and (2) we use sub-tiles of size 32xk in shared memory per threadblock.
......@@ -1905,7 +1905,7 @@ template <int ITEMS_PER_THREAD, int SUBTILE_ROWS, int THREADS>__global__ void kd
// We can run for example 32x128 sub-tiles and warp-strided loads of 4 elements so that each thread has
// the same col statistic but needs to load 4 row stats from shared memory. To prevent bank conflicts
// we use a block-striped shared memory config [1, 31, 63, 95] so no bank conflicts happen during the
// shared memory loads.
// shared memory loads.
// data is in 32 column-tile major with tile width 32 columns and numRows rows
// L1. Load sub-tile row/col statistics. Each thread only holds 1 col, load rows into shared memory.
......@@ -2142,7 +2142,7 @@ template <int THREADS, int ITEMS_PER_THREAD, int TILE_ROWS, int TILE_COLS, int T
// To have efficient loads and stores if we transpose we need 128 consequitive bytes which at 1 byte are 128 values
// As such we need:
// As such we need:
// at least 32*4 shared memory tiles for col32; preferably 32*32
// at least 32*6 shared memory tiles for col32_ampere: preferably 32*32
// at least 32*8 shared memory tiles for col4_turing: preferably 32*32
......@@ -2152,7 +2152,7 @@ template <int THREADS, int ITEMS_PER_THREAD, int TILE_ROWS, int TILE_COLS, int T
// we have 64k sharded mem per SM in Turing which is 8 blocks per SM which is 2*8 = 32 warps = 100% occupancy
// for turing and 50% for A100 and 75% for RTX 30s / A40 which is probably good enough
// register pressure should be low with: 8 registers from local memoryh per block and 64 registers per SM
//
//
// to make the shared memory work with that occupancy we might need to union the block loads/stores
// each block loads TILE_COLs columns and TILE_ROW rows
......@@ -2241,7 +2241,7 @@ template <int THREADS, int ITEMS_PER_THREAD, int TILE_ROWS, int TILE_COLS, int T
switch(FORMAT)
{
case COL32:
case COL32:
if(TRANSPOSE)
{
// data lies in shared memory in the following way:
......@@ -2266,7 +2266,7 @@ template <int THREADS, int ITEMS_PER_THREAD, int TILE_ROWS, int TILE_COLS, int T
// each 32 columns we have new tile
// each tile has size outRows*32 and base_row is done in increments of 32
offset = base_row*outRows;
offset = base_row*outRows;
out[offset + (base_col + jrow + subrow_loop_row)*32 + threadIdx.x] = data;
}
}
......@@ -2312,7 +2312,7 @@ template <int THREADS, int ITEMS_PER_THREAD, int TILE_ROWS, int TILE_COLS, int T
// we increase by row_tile_column every 32 columns
// base_row increase in increments of 32
//int row_tile_column = 256*outRows/8; // there are outRows/8 row tiles, and each tile is 256 elements
//int col_offset = (base_row/32)*row_tile_column;
//int col_offset = (base_row/32)*row_tile_column;
// -> we can remove the divisions to speed up compute since outRows is always a multiple of 8
// 256*outRows/8*base_row/32 = outRows*base_row
int col_offset = outRows*base_row;
......@@ -2349,7 +2349,7 @@ template <int THREADS, int ITEMS_PER_THREAD, int TILE_ROWS, int TILE_COLS, int T
// this happends every 8 rows anew (subrow % 8)
// one writes 4 columns at once that is (col % 4) for the particular index in the subtile
int subcol = warp_lane;
// add local offset (4x4 sub-tile)
if(subrow % 2 == 1)
// odd
......@@ -2389,7 +2389,7 @@ template <int THREADS, int ITEMS_PER_THREAD, int TILE_ROWS, int TILE_COLS, int T
// we increase by row_tile_column every 32 columns
// base_row increase in increments of 32
//int row_tile_column = 1024*outRows/32; // there are outRows/32 row tiles, and each tile is 1024 elements
//int col_offset = (base_row/32)*row_tile_column;
//int col_offset = (base_row/32)*row_tile_column;
// -> we can remove the divisions to speed up compute since outRows is always a multiple of 8
// 1024*outRows/32*base_row/32 = outRows*base_row
int col_offset = outRows*base_row;
......@@ -2447,7 +2447,7 @@ template <int THREADS, int ITEMS_PER_THREAD, int TILE_ROWS, int TILE_COLS, int T
#define C 1.0f/127.0f
#define MAX_SPARSE_COUNT 32
#define SMEM_SIZE 8*256
template <typename T, int SPMM_ITEMS, int BITS>
template <typename T, int SPMM_ITEMS, int BITS>
__global__ void kspmm_coo_very_sparse_naive(int *max_count, int *max_idx, int *offset_rowidx, int *rowidx, int *colidx, half *values, T *B, half *out, float * __restrict__ const dequant_stats, int nnz, int rowsA, int rowsB, int colsB)
{
......@@ -2577,7 +2577,7 @@ __global__ void kspmm_coo_very_sparse_naive(int *max_count, int *max_idx, int *o
#pragma unroll num_items
for(int k = 0; k < num_items; k++)
local_valC[(j/num_items) + k] = (float)local_valC[(j/num_items) + k] + (float)local_valOut[k];
reinterpret_cast<float4*>(out)[idx_val/num_items] = reinterpret_cast<float4(&)[num_items]>(local_valC)[j/num_items];
}
else
......@@ -2591,11 +2591,11 @@ __global__ void kspmm_coo_very_sparse_naive(int *max_count, int *max_idx, int *o
idx_col_B += blockDim.x*SPMM_ITEMS;
local_idx_col_B_offset += blockDim.x*SPMM_ITEMS;
}
}
}
template <int FORMAT> __global__ void kExtractOutliers(char *A, int *idx, char *out, int idx_size, int rowsA, int colsA, int tiledRowsA, int tiledColsA)
{
{
int local_colidx = idx[blockIdx.x];
if(FORMAT==COL_TURING)
......@@ -2655,7 +2655,7 @@ template <int FORMAT> __global__ void kExtractOutliers(char *A, int *idx, char *
out[out_idx] = val;
}
}
}
}
//==============================================================
// TEMPLATE DEFINITIONS
......
// Copyright (c) Facebook, Inc. and its affiliates.
//
// This source code is licensed under the MIT license found in the
// Copyright (c) Facebook, Inc. and its affiliates.
//
// This source code is licensed under the MIT license found in the
// LICENSE file in the root directory of this source tree.
#include <float.h>
......@@ -18,49 +18,49 @@ template<typename T, int BLOCK_SIZE, int NUM_PER_TH, int STOCHASTIC> __global__
template<typename T, int BLOCK_SIZE, int THREADS, int NUM_PER_TH> __global__ void kDequantizeBlockwise(float *code, unsigned char * A, float * absmax, T *out, const int n);
template<typename T, int OPTIMIZER, int BLOCK_SIZE, int NUM_VALS>
__global__ void kPreconditionOptimizer32bit2State(T* g, T* p,
__global__ void kPreconditionOptimizer32bit2State(T* g, T* p,
float* state1, float* state2, float *unorm,
const float beta1, const float beta2, const float eps, const float weight_decay,
const int step, const float lr, const float gnorm_scale, const int n);
template<typename T, int OPTIMIZER>
__global__ void kOptimizer32bit2State(T* g, T* p,
__global__ void kOptimizer32bit2State(T* g, T* p,
float* state1, float* state2, float *unorm, const float max_unorm, const float param_norm,
const float beta1, const float beta2, const float eps, const float weight_decay,
const int step, const float lr, const float gnorm_scale, const bool skip_zeros, const int n);
template<typename T, int OPTIMIZER, int BLOCK_SIZE, int NUM_VALS>
__global__ void kPreconditionOptimizer32bit1State(T* g, T* p,
__global__ void kPreconditionOptimizer32bit1State(T* g, T* p,
float* state1, float *unorm,
const float beta1, const float eps, const float weight_decay,
const int step, const float lr, const float gnorm_scale, const int n);
template<typename T, int OPTIMIZER>
__global__ void kOptimizer32bit1State(T* g, T* p,
__global__ void kOptimizer32bit1State(T* g, T* p,
float* state1, float *unorm, const float max_unorm, const float param_norm,
const float beta1, const float eps, const float weight_decay,
const int step, const float lr, const float gnorm_scale, const bool skip_zeros, const int n);
template<typename T, int OPTIMIZER>
__global__ void
kPreconditionOptimizerStatic8bit1State(T* p, T* __restrict__ const g, unsigned char*__restrict__ const state1,
kPreconditionOptimizerStatic8bit1State(T* p, T* __restrict__ const g, unsigned char*__restrict__ const state1,
float *unorm,
const float beta1,
const float eps, const int step,
float* __restrict__ const quantiles1,
float* max1, float* new_max1,
const float beta1,
const float eps, const int step,
float* __restrict__ const quantiles1,
float* max1, float* new_max1,
const float weight_decay,
const float gnorm_scale, const int n);
template<typename T, int OPTIMIZER>
__global__ void
kOptimizerStatic8bit1State(T* p, T* const g, unsigned char* state1,
kOptimizerStatic8bit1State(T* p, T* const g, unsigned char* state1,
const float *unorm, const float max_unorm, const float param_norm,
const float beta1,
const float eps, const int step, const float lr,
float* __restrict__ const quantiles1,
float* max1, float* new_max1,
const float beta1,
const float eps, const int step, const float lr,
float* __restrict__ const quantiles1,
float* max1, float* new_max1,
float weight_decay, const float gnorm_scale, const int n);
......@@ -70,7 +70,7 @@ __global__ void
kPreconditionOptimizerStatic8bit2State(T* p, T* __restrict__ const g, unsigned char*__restrict__ const state1, unsigned char* __restrict__ const state2,
float *unorm,
const float beta1, const float beta2,
const float eps, const int step,
const float eps, const int step,
float* __restrict__ const quantiles1, float* __restrict__ const quantiles2,
float* max1, float* max2, float* new_max1, float* new_max2,
const float gnorm_scale, const int n);
......@@ -81,7 +81,7 @@ __global__ void
kOptimizerStatic8bit2State(T* p, T* const g, unsigned char* state1, unsigned char* state2,
const float *unorm, const float max_unorm, const float param_norm,
const float beta1, const float beta2,
const float eps, const int step, const float lr,
const float eps, const int step, const float lr,
float* __restrict__ const quantiles1, float* __restrict__ const quantiles2,
float* max1, float* max2, float* new_max1, float* new_max2,
float weight_decay, const float gnorm_scale, const int n);
......@@ -121,5 +121,3 @@ template <int THREADS, int ITEMS_PER_THREAD, int TILE_ROWS, int TILE_COLS, int T
template <int FORMAT> __global__ void kExtractOutliers(char *A, int *idx, char *out, int idx_size, int rowsA, int colsA, int tiledRowsA, int tiledColsA);
#endif
// Copyright (c) Facebook, Inc. and its affiliates.
//
// This source code is licensed under the MIT license found in the
// Copyright (c) Facebook, Inc. and its affiliates.
//
// This source code is licensed under the MIT license found in the
// LICENSE file in the root directory of this source tree.
#include <ops.cuh>
......@@ -241,7 +241,7 @@ void gemmex(Context *context, bool transposeA, bool transposeB, int m, int n, in
}
void strided_gemmex(Context *context, bool transposeA, bool transposeB, int m, int n, int k, void *A, void *B, void *C, int lda, int ldb, int ldc,
void strided_gemmex(Context *context, bool transposeA, bool transposeB, int m, int n, int k, void *A, void *B, void *C, int lda, int ldb, int ldc,
long long int strideA, long long int strideB, long long int strideC, int batchCount)
{
const int falpha = 1;
......@@ -351,7 +351,7 @@ template <typename T, int SRC, int TARGET, bool transpose, int DTYPE> void trans
cublasLtOrder_t orderOut = get_order<TARGET>();
int ldA = get_leading_dim<SRC>(dim1, dim2);
int ldOut = get_leading_dim<TARGET>(dim1, dim2);
cublasLtMatrixLayout_t A_desc = NULL, out_desc = NULL;
cublasLtMatrixTransformDesc_t A2Out_desc = NULL;
cublasOperation_t opTranspose = CUBLAS_OP_T;
......@@ -397,7 +397,7 @@ template void transform<int8_t, ROW, COL_AMPERE, false, 8>(cublasLtHandle_t ltHa
template void transform<int8_t, COL32, ROW, false, 8>(cublasLtHandle_t ltHandle, int8_t *A, int8_t *out, int dim1, int dim2);
template void transform<int32_t, COL32, ROW, false, 32>(cublasLtHandle_t ltHandle, int32_t *A, int32_t *out, int dim1, int dim2);
template <int FORMATB, int DTYPE_OUT, int SCALE_ROWS> int igemmlt(cublasLtHandle_t ltHandle, int m, int n, int k, const int8_t *A, const int8_t *B, void *C, float *row_scale, int lda, int ldb, int ldc)
template <int FORMATB, int DTYPE_OUT, int SCALE_ROWS> int igemmlt(cublasLtHandle_t ltHandle, int m, int n, int k, const int8_t *A, const int8_t *B, void *C, float *row_scale, int lda, int ldb, int ldc)
{
#ifdef NO_CUBLASLT
cout << "" << endl;
......
// Copyright (c) Facebook, Inc. and its affiliates.
//
// This source code is licensed under the MIT license found in the
// Copyright (c) Facebook, Inc. and its affiliates.
//
// This source code is licensed under the MIT license found in the
// LICENSE file in the root directory of this source tree.
......@@ -131,7 +131,7 @@ void dequantize(float *code, unsigned char *A, float *out, int n);
template <typename T, int STOCHASTIC> void quantizeBlockwise(float * code, T *A, float *absmax, unsigned char *out, float* rand, int rand_offset, int blocksize, const int n);
template<typename T> void dequantizeBlockwise(float *code, unsigned char *A, float *absmax, T *out, int block_size, const int n);
template<typename T, int OPTIMIZER> void optimizer32bit(T* g, T* p,
template<typename T, int OPTIMIZER> void optimizer32bit(T* g, T* p,
float* state1, float* state2, float *unorm, float max_unorm, float param_norm,
float beta1, float beta2, float eps, float weight_decay,
int step, float lr, const float gnorm_scale, bool skip_zeros, int n);
......@@ -139,15 +139,15 @@ template<typename T, int OPTIMIZER> void optimizer32bit(T* g, T* p,
template<typename T, int OPTIMIZER> void optimizerStatic8bit(T* p, T* g, unsigned char* state1, unsigned char* state2,
float *unorm, float max_unorm, float param_norm,
float beta1, float beta2,
float eps, int step, float lr,
float eps, int step, float lr,
float* quantiles1, float* quantiles2,
float* max1, float* max2, float* new_max1, float* new_max2,
float weight_decay,
const float gnorm_scale, int n);
template<typename T, int OPTIMIZER> void optimizerStatic8bitBlockwise(T* p, T* g,
unsigned char* state1, unsigned char* state2, float beta1, float beta2, float eps, int step, float lr,
float* quantiles1, float* quantiles2, float* absmax1, float* absmax2, float weight_decay, const float gnorm_scale,
unsigned char* state1, unsigned char* state2, float beta1, float beta2, float eps, int step, float lr,
float* quantiles1, float* quantiles2, float* absmax1, float* absmax2, float weight_decay, const float gnorm_scale,
bool skip_zeros, int n);
template<typename T> void percentileClipping(T * g, float *gnorm_vec, int step, const int n);
......@@ -155,7 +155,7 @@ template<typename T> void percentileClipping(T * g, float *gnorm_vec, int step,
void histogramScatterAdd2D(float* histogram, int *index1, int *index2, float *src, int maxidx1, int n);
void gemmex(Context * context, bool transposeA, bool transposeB, int m, int n, int k, void *A, void *B, void *C, int lda, int ldb, int ldc);
void strided_gemmex(Context *context, bool transposeA, bool transposeB, int m, int n, int k, void *A, void *B, void *C, int lda, int ldb, int ldc,
void strided_gemmex(Context *context, bool transposeA, bool transposeB, int m, int n, int k, void *A, void *B, void *C, int lda, int ldb, int ldc,
long long int strideA, long long int strideB, long long int strideC, int batchCount);
......
// Copyright (c) Facebook, Inc. and its affiliates.
//
// This source code is licensed under the MIT license found in the
// Copyright (c) Facebook, Inc. and its affiliates.
//
// This source code is licensed under the MIT license found in the
// LICENSE file in the root directory of this source tree.
#if BUILD_CUDA
......@@ -9,7 +9,7 @@
#include <cpu_ops.h>
// We cannot call templated code from C, so we wrap the template in a C compatible call here if necessary.
// We use macro functions to expand all the different optimizers. Looks ugly, and is ugly, but its better than to
// We use macro functions to expand all the different optimizers. Looks ugly, and is ugly, but its better than to
// maintain all that boilerplate
//===================================================================================
// UNMANGLED CALLS
......@@ -290,4 +290,3 @@ extern "C"
void cquantize_blockwise_cpu_fp32(float *code, float *A, float *absmax, unsigned char *out, long long blocksize, long long n){ quantize_cpu(code, A, absmax, out, blocksize, n); }
void cdequantize_blockwise_cpu_fp32(float *code, unsigned char *A, float *absmax, float *out, long long blocksize, long long n){ dequantize_cpu(code, A, absmax, out, blocksize, n); }
}
......@@ -76,6 +76,3 @@ if [[ -n "$CUDA_VERSION" ]]; then
else
echo ""
fi
......@@ -14,16 +14,16 @@ mng.register_parameters(model.parameters()) # 1. register parameters while still
model = model.cuda()
# use 8-bit optimizer states for all parameters
adam = bnb.optim.Adam(model.parameters(), lr=0.001, optim_bits=8)
adam = bnb.optim.Adam(model.parameters(), lr=0.001, optim_bits=8)
# 2a. override: the parameter model.fc1.weight now uses 32-bit Adam
mng.override_config(model.fc1.weight, 'optim_bits', 32)
mng.override_config(model.fc1.weight, 'optim_bits', 32)
# 2b. override: the two special layers use
# sparse optimization + different learning rate + different Adam betas
mng.override_config([model.special.weight, model.also_special.weight],
key_value_dict ={'is_sparse': True, 'lr': 1e-5, 'betas'=(0.9, 0.98)})
```
key_value_dict ={'is_sparse': True, 'lr': 1e-5, 'betas'=(0.9, 0.98)})
```
Possible options for the config override are: `betas, eps, weight_decay, lr, optim_bits, min_8bit_size, percentile_clipping, block_wise, max_unorm`
For overrides for particular layers we recommend overriding locally in each module. You can do this by passing the module, the parameter, and its attribute name to the GlobalOptimManager:
......
......@@ -121,7 +121,7 @@ template <unsigned char Gap, typename T>
struct DirectTraits<true,Gap,T>
{
typedef FVec1<SSE, T> fVec1;
static void checkH(T scaler, T H_Times_x0, T xN)
{
union {
......@@ -177,9 +177,9 @@ struct DirectInfo
, cst0(fun_t::cst0(H, x[0]))
{
myassert(((bws != NULL) && (isAligned(bws,64))), "bucket pointer not allocated or incorrectly aligned");
uint32 nb = 1 + fun_t::f(H, cst0, x[n-1]);
const uint32 npad = Gap-1;
const uint32 n_sz = n + npad; // size of padded vector
......@@ -320,7 +320,7 @@ struct DirectInfo
T cst0 = fun_t::cst0(H, px[0]);
const uint32 maxIndex = fun_t::f(H, cst0, px[n-1]);
buckets.resize(maxIndex + 1);
data = Data(px, n, H, buckets.begin(), (npad? xi.begin(): NULL));
}
......
......@@ -203,7 +203,7 @@ struct IVec<SSE, double> : IVecBase<SSE>
#if 1
// takes 4 cycles
__m128i hi = _mm_shuffle_epi32(vec, 2); // 1 cycle
__m128i s = _mm_add_epi32(vec, hi);
__m128i s = _mm_add_epi32(vec, hi);
int32 x = _mm_cvtsi128_si32(s);
return -x;
#else
......
......@@ -26,9 +26,6 @@ setup(
keywords="gpu optimizers optimization 8-bit quantization compression",
url="https://github.com/TimDettmers/bitsandbytes",
packages=find_packages(),
entry_points={
"console_scripts": ["debug_cuda = bitsandbytes.debug_cli:cli"],
},
package_data={"": libs},
long_description=read("README.md"),
long_description_content_type="text/markdown",
......
from itertools import product, permutations
from itertools import permutations, product
import pytest
import torch
......@@ -27,7 +27,7 @@ str_values = list(
)
)
names = [
"dim1_{0}_dim2_{1}_dim3_{2}_dim4_{3}_func_{4}_dtype_{5}_requires_grad_{6}_transpose_{7}".format(
"dim1_{}_dim2_{}_dim3_{}_dim4_{}_func_{}_dtype_{}_requires_grad_{}_transpose_{}".format(
*vals
)
for vals in str_values
......@@ -286,7 +286,7 @@ str_values = list(
has_bias
)
)
names = ["dim1_{0}_dim2_{1}_dim3_{2}_dim4_{3}_func_{4}_dtype_{5}_requires_grad_{6}_transpose_{7}_decomp_{8}_has_fp16_weights_{9}_has_bias_{10}".format(*vals) for vals in str_values]
names = ["dim1_{}_dim2_{}_dim3_{}_dim4_{}_func_{}_dtype_{}_requires_grad_{}_transpose_{}_decomp_{}_has_fp16_weights_{}_has_bias_{}".format(*vals) for vals in str_values]
@pytest.mark.parametrize(
......@@ -336,7 +336,7 @@ def test_matmullt(
)
bias = None
bias2 = None
if has_bias:
if has_bias:
bias = torch.randn(dim4, device='cuda', dtype=dtype, requires_grad=req_grad[2])
bias2 = bias.clone()
torch.nn.init.xavier_uniform_(B)
......
import os
import pytest
import bitsandbytes as bnb
from typing import List, NamedTuple
import pytest
import bitsandbytes as bnb
from bitsandbytes.cuda_setup import (
CUDA_RUNTIME_LIB,
evaluate_cuda_setup,
determine_cuda_runtime_lib_path,
evaluate_cuda_setup,
extract_candidate_paths,
)
......
......@@ -28,7 +28,7 @@ def assert_all_approx_close(a, b, rtol=1e-3, atol=1e-3, count=0):
class FFN(torch.nn.Module):
def __init__(self, input_features, hidden_size, bias=True):
super(FFN, self).__init__()
super().__init__()
self.fc1 = torch.nn.Linear(input_features, hidden_size, bias=bias)
self.fc2 = torch.nn.Linear(hidden_size, input_features, bias=bias)
......@@ -42,7 +42,7 @@ class FFN(torch.nn.Module):
return x
class Timer(object):
class Timer:
def __init__(self):
self.starts = {}
self.ends = {}
......@@ -69,7 +69,7 @@ class Timer(object):
self.ends.pop(name)
if print_ms and name in self.agg:
print("{0} took: {1:.5f}s".format(name, self.agg[name] / 1000.0))
print(f"{name} took: {self.agg[name] / 1000.0:.5f}s")
return self.agg[name]
......@@ -302,7 +302,7 @@ batched = [False, True]
values = list(product(dim1, dim2, methods, batched))
values_names = list(product(dim1, dim2, method_names, batched))
names = [
"dim1_{0}_dim2_{1}_quant_{2}_batched_{3}".format(*vals)
"dim1_{}_dim2_{}_quant_{}_batched_{}".format(*vals)
for vals in values_names
]
......@@ -360,7 +360,7 @@ seq_dim = torch.randint(16, 256, size=(n,)).tolist()
transpose = [(False, False), (False, True), (True, False), (True, True)]
values = list(product(hidden_dim, batch_dim, transpose, seq_dim))
names = [
"hidden_dim_{0}_batch_dim_{1},transpose_{2}_seq_dim_{3}".format(*vals)
"hidden_dim_{}_batch_dim_{},transpose_{}_seq_dim_{}".format(*vals)
for vals in values
]
......@@ -425,7 +425,7 @@ hidden_dim = torch.randint(32, 1024 * 4, size=(n,)).tolist()
batch_dim = torch.randint(2, 16, size=(n,)).tolist()
values = list(product(seq_dim, hidden_dim, batch_dim))
names = [
"seq_dim{0}_hidden_dim{1}_batch_dim{2}".format(*vals) for vals in values
"seq_dim{}_hidden_dim{}_batch_dim{}".format(*vals) for vals in values
]
......@@ -457,7 +457,7 @@ batch_dim = torch.randint(2, 16, size=(n,)).tolist()
transpose = [False, True]
values = list(product(seq_dim, hidden_dim, batch_dim, transpose))
names = [
"seq_dim={0}_hidden_dim={1}_batch_dim={2}_transpose{3}".format(*vals)
"seq_dim={}_hidden_dim={}_batch_dim={}_transpose{}".format(*vals)
for vals in values
]
......@@ -542,7 +542,7 @@ dim4 = torch.randint(32, 256, size=(n,)).tolist()
transpose = [(False, False), (True, False), (False, True), (True, True)]
values = list(product(dim1, dim2, dim3, dim4, transpose))
names = [
"dim1_{0}_dim2_{1}_dim3_{2}_dim4_{3}_transpose_{4}".format(*vals)
"dim1_{}_dim2_{}_dim3_{}_dim4_{}_transpose_{}".format(*vals)
for vals in values
]
......@@ -580,7 +580,7 @@ dim1 = torch.randint(1, 64, size=(n,)).tolist()
dim2 = torch.randint(32, 128, size=(n,)).tolist()
dim3 = torch.randint(32, 256, size=(n,)).tolist()
values = list(product(dim1, dim2, dim3))
names = ["dim1_{0}_dim2_{1}_dim3_{2}".format(*vals) for vals in values]
names = ["dim1_{}_dim2_{}_dim3_{}".format(*vals) for vals in values]
@pytest.mark.parametrize("dim1, dim2, dim3", values, ids=names)
......@@ -609,7 +609,7 @@ transpose = [False]
dims = [2, 3]
values = list(product(dim1, dim2, dim3, dims, dtype, a_order, out_order, transpose))
names = ["dim1_{0}_dim2_{1}_dim3_{2}_dims_{3}_dtype_{4}_orderA_{5}_orderOut_{6}_transpose_{7}".format(*vals)for vals in values]
names = ["dim1_{}_dim2_{}_dim3_{}_dims_{}_dtype_{}_orderA_{}_orderOut_{}_transpose_{}".format(*vals)for vals in values]
@pytest.mark.parametrize("dim1, dim2, dim3, dims, dtype, orderA, orderOut, transpose",values,ids=names)
......@@ -691,7 +691,7 @@ ldb = [0]
# ldb = list(range(256, 1*1024, 256))
values = list(product(dim1, dim2, dim3, dim4, dims, ldb))
names = [
"dim1_{0}_dim2_{1}_dim3_{2}_dim4_{3}_dims_{4}_ldb_{5}".format(*vals)
"dim1_{}_dim2_{}_dim3_{}_dim4_{}_dims_{}_ldb_{}".format(*vals)
for vals in values
]
......@@ -739,7 +739,7 @@ dims = (2,)
# ldb = list(range(256, 1*1024, 256))
values = list(product(dim1, dim2, dim3, dim4, dims))
names = [
"dim1_{0}_dim2_{1}_dim3_{2}_dim4_{3}_dims_{4}".format(*vals)
"dim1_{}_dim2_{}_dim3_{}_dim4_{}_dims_{}".format(*vals)
for vals in values
]
......@@ -797,7 +797,7 @@ values = [
# values = list(product(batch, seq, model, hidden))
names = [
"batch_{0}_seq_{1}_model_{2}_hidden_{3}".format(*vals) for vals in values
"batch_{}_seq_{}_model_{}_hidden_{}".format(*vals) for vals in values
]
......@@ -965,7 +965,7 @@ dims = (2,)
formatB = ["col_turing", "col_ampere"]
has_bias = [True, False]
values = list(product(dim1, dim4, dims, formatB, has_bias))
names = ["dim1_{0}_dim4_{1}_dims_{2}_formatB_{3}_has_bias_{4}".format(*vals) for vals in values]
names = ["dim1_{}_dim4_{}_dims_{}_formatB_{}_has_bias_{}".format(*vals) for vals in values]
@pytest.mark.parametrize("dim1, dim4, dims, formatB, has_bias", values, ids=names)
......@@ -1015,7 +1015,7 @@ dim2 = [1 * 1024]
dims = (2,)
# ldb = list(range(256, 1*1024, 256))
values = list(product(dim1, dim2, dims))
names = ["dim1_{0}_dim2_{1}_dims_{2}".format(*vals) for vals in values]
names = ["dim1_{}_dim2_{}_dims_{}".format(*vals) for vals in values]
@pytest.mark.parametrize("dim1, dim2, dims", values, ids=names)
......@@ -1071,7 +1071,7 @@ dim1 = torch.randint(1, 4 * 1024, size=(n,)).tolist()
dim2 = torch.randint(1, 4 * 1024, size=(n,)).tolist()
values = list(product(dim1, dim2))
names = ["dim1_{0}_dim2_{1}".format(*vals) for vals in values]
names = ["dim1_{}_dim2_{}".format(*vals) for vals in values]
@pytest.mark.parametrize("dim1, dim2", values, ids=names)
......@@ -1118,7 +1118,7 @@ dim4 = torch.randint(1, 4 * 1024, size=(n,)).tolist()
inner = torch.randint(1, 4 * 1024, size=(n,)).tolist()
values = list(zip(dim1, dim4, inner))
names = ["dim1_{0}_dim4_{1}_inner_{2}".format(*vals) for vals in values]
names = ["dim1_{}_dim4_{}_inner_{}".format(*vals) for vals in values]
@pytest.mark.parametrize("dim1, dim4, inner", values, ids=names)
......@@ -1162,7 +1162,7 @@ dim4 = torch.randint(1, 4 * 1024, size=(n,)).tolist()
inner = torch.randint(1, 4 * 1024, size=(n,)).tolist()
values = list(zip(dim1, dim4, inner))
names = ["dim1_{0}_dim4_{1}_inner_{2}".format(*vals) for vals in values]
names = ["dim1_{}_dim4_{}_inner_{}".format(*vals) for vals in values]
@pytest.mark.parametrize("dim1, dim4, inner", values, ids=names)
......@@ -1237,7 +1237,7 @@ inner = [12288 * 4, 4096 * 4]
dim4 = [12288, 4096]
values = list(zip(dim1, dim4, inner))
names = ["dim1_{0}_dim4_{1}_inner_{2}".format(*vals) for vals in values]
names = ["dim1_{}_dim4_{}_inner_{}".format(*vals) for vals in values]
@pytest.mark.parametrize("dim1, dim4, inner", values, ids=names)
......@@ -1303,7 +1303,7 @@ values = list(
product(dim1, dim2, dim3, dims, dtype, a_order, out_order, transpose)
)
names = [
"dim1_{0}_dim2_{1}_dim3_{2}_dims_{3}_dtype_{4}_orderA_{5}_orderOut_{6}_{7}".format(
"dim1_{}_dim2_{}_dim3_{}_dims_{}_dtype_{}_orderA_{}_orderOut_{}_{}".format(
*vals
)
for vals in values
......@@ -1354,7 +1354,7 @@ a_order = ["col_turing"]
out_order = ["row"]
values = list(product(dim1, dim2, dtype, a_order, out_order))
names = [
"dim1_{0}_dim2_{1}_dtype_{2}_orderA_{3}_orderOut_{4}".format(*vals)
"dim1_{}_dim2_{}_dtype_{}_orderA_{}_orderOut_{}".format(*vals)
for vals in values
]
......@@ -1380,7 +1380,7 @@ dim2 = torch.randint(1, 4 * 1024, size=(n,)).tolist()
# dim2 = [5]
values = list(product(dim1, dim2))
names = ["dim1_{0}_dim2_{1}".format(*vals) for vals in values]
names = ["dim1_{}_dim2_{}".format(*vals) for vals in values]
@pytest.mark.parametrize("dim1, dim2", values, ids=names)
......@@ -1417,7 +1417,7 @@ dim2 = torch.randint(1, 1 * 1024, size=(n,)).tolist()
# dim2 = [11]
transposed_B = [False, True]
values = list(product(dim1, dim2, transposed_B))
names = ["dim1_{0}_dim2_{1}_transposed_B_{2}".format(*vals) for vals in values]
names = ["dim1_{}_dim2_{}_transposed_B_{}".format(*vals) for vals in values]
@pytest.mark.parametrize("dim1, dim2, transposed_B", values, ids=names)
......@@ -1498,7 +1498,7 @@ n = 2
dim1 = torch.randint(256, 1 * 1024, size=(n,)).tolist()
dim2 = torch.randint(256, 1 * 1024, size=(n,)).tolist()
values = list(product(dim1, dim2))
names = ["dim1_{0}_dim2_{1}".format(*vals) for vals in values]
names = ["dim1_{}_dim2_{}".format(*vals) for vals in values]
@pytest.mark.parametrize("dim1, dim2", values, ids=names)
......@@ -1563,7 +1563,7 @@ dtype = [torch.float16]
out_function = ["zeros", "ones"]
values = list(product(dim1, dim2, dtype, out_function))
names = [
"dim1_{0}_dim2_{1}_dtype_{2}_out_func_{3}".format(*vals) for vals in values
"dim1_{}_dim2_{}_dtype_{}_out_func_{}".format(*vals) for vals in values
]
......@@ -1680,7 +1680,7 @@ dim2 = [2048]
# dim2 = [2]
dtype = [torch.int8]
values = list(product(dim1, dim2, dtype))
names = ["dim1_{0}_dim2_{1}_dtype_{2}".format(*vals) for vals in values]
names = ["dim1_{}_dim2_{}_dtype_{}".format(*vals) for vals in values]
@pytest.mark.parametrize("dim1, dim2, dtype", values, ids=names)
......@@ -1796,7 +1796,7 @@ values.append((batch_size, seqdim, 768, 4 * 768))
# values.append((batch_size, seqdim, 5140, 4*5140))
#values.append((batch_size, seqdim, 12288, 4*12288))
names = [
"batch_{0}_seq_{1}_model_{2}_hidden_{3}".format(*vals) for vals in values
"batch_{}_seq_{}_model_{}_hidden_{}".format(*vals) for vals in values
]
......
......@@ -7,7 +7,7 @@ from torch import nn
import bitsandbytes as bnb
class MockArgs(object):
class MockArgs:
def __init__(self, initial_data):
for key in initial_data:
setattr(self, key, initial_data[key])
......@@ -15,7 +15,7 @@ class MockArgs(object):
class MLP8bit(torch.nn.Module):
def __init__(self, dim1, dim2, has_fp16_weights=True, memory_efficient_backward=False, threshold=0.0):
super(MLP8bit, self).__init__()
super().__init__()
self.fc1 = bnb.nn.Linear8bitLt(
dim1, dim2, has_fp16_weights=has_fp16_weights, memory_efficient_backward=memory_efficient_backward,
threshold=threshold
......@@ -289,7 +289,7 @@ class LinearFunction(torch.autograd.Function):
class Linear8bit(nn.Module):
def __init__(self, input_features, output_features, bias=True, args=None):
super(Linear8bit, self).__init__()
super().__init__()
self.input_features = input_features
self.output_features = output_features
self.args = args
......@@ -312,7 +312,7 @@ class Linear8bit(nn.Module):
threshold = [0.0, 3.0]
values = threshold
names = ["threshold_{0}".format(vals) for vals in values]
names = [f"threshold_{vals}" for vals in values]
@pytest.mark.parametrize("threshold", values, ids=names)
......@@ -378,7 +378,7 @@ def test_linear8bitlt_accumulated_gradient():
threshold = [0.0, 2.0]
values = threshold
names = ["threshold_{0}".format(vals) for vals in values]
names = [f"threshold_{vals}" for vals in values]
@pytest.mark.parametrize("threshold", values, ids=names)
......
......@@ -18,7 +18,7 @@ k = 20
def get_temp_dir():
path = "/tmp/autoswap/{0}".format(str(uuid.uuid4()))
path = f"/tmp/autoswap/{str(uuid.uuid4())}"
os.makedirs(path, exist_ok=True)
return path
......@@ -116,7 +116,7 @@ gtype = [torch.float32, torch.float16]
optimizer_names = ["adam", "momentum", "rmsprop", "lars"]
values = list(product(dim1, dim2, gtype, optimizer_names))
names = [
"dim1_{0}_dim2_{1}_gtype_{2}_optim_{3}".format(*vals) for vals in values
"dim1_{}_dim2_{}_gtype_{}_optim_{}".format(*vals) for vals in values
]
......@@ -187,7 +187,7 @@ dim1 = [1024]
dim2 = [32, 1024, 4097]
gtype = [torch.float32, torch.float16]
values = list(product(dim1, dim2, gtype))
names = ["dim1_{0}_dim2_{1}_gtype_{2}".format(*vals) for vals in values]
names = ["dim1_{}_dim2_{}_gtype_{}".format(*vals) for vals in values]
@pytest.mark.parametrize("dim1, dim2, gtype", values, ids=names)
......@@ -250,7 +250,7 @@ optimizer_names = [
]
values = list(product(dim1, dim2, gtype, optimizer_names))
names = [
"dim1_{0}_dim2_{1}_gtype_{2}_optim_{3}".format(*vals) for vals in values
"dim1_{}_dim2_{}_gtype_{}_optim_{}".format(*vals) for vals in values
]
......@@ -391,7 +391,7 @@ gtype = [torch.float32]
optim_bits = [32, 8]
values = list(product(dim1, dim2, gtype, optim_bits))
names = [
"dim1_{0}_dim2_{1}_gtype_{2}_optim_bits_{3}".format(*vals)
"dim1_{}_dim2_{}_gtype_{}_optim_bits_{}".format(*vals)
for vals in values
]
......@@ -495,7 +495,7 @@ gtype = [torch.float32, torch.float16]
optimizer_names = ["adam8bit_blockwise"]
values = list(product(dim1, dim2, gtype, optimizer_names))
names = [
"dim1_{0}_dim2_{1}_gtype_{2}_optim_{3}".format(*vals) for vals in values
"dim1_{}_dim2_{}_gtype_{}_optim_{}".format(*vals) for vals in values
]
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment