-[LLM.int8() Paper](https://arxiv.org/abs/2208.07339) -- [LLM.int8() Software Blog Post](https://huggingface.co/blog/hf-bitsandbytes-integration) -- [LLM.int8() Emergent Features Blog Post](https://timdettmers.com/2022/08/17/llm-int8-and-emergent-features/)
-[LLM.int8() Paper](https://arxiv.org/abs/2208.07339) -- [LLM.int8() Software Blog Post](https://huggingface.co/blog/hf-bitsandbytes-integration) -- [LLM.int8() Emergent Features Blog Post](https://timdettmers.com/2022/08/17/llm-int8-and-emergent-features/)
## TL;DR
## TL;DR
**Requirements**
Linux distribution (Ubuntu, MacOS, etc.) + CUDA >= 10.0. LLM.int8() requires Turing or Ampere GPUs.
**Installation**:
**Installation**:
``pip install bitsandbytes``
``pip install bitsandbytes``
...
@@ -52,6 +54,8 @@ Hardware requirements:
...
@@ -52,6 +54,8 @@ Hardware requirements:
Supported CUDA versions: 10.2 - 11.7
Supported CUDA versions: 10.2 - 11.7
The bitsandbytes library is currently only supported on Linux distributions. Windows is not supported at the moment.
The requirements can best be fulfilled by installing pytorch via anaconda. You can install PyTorch by following the ["Get Started"](https://pytorch.org/get-started/locally/) instructions on the official website.
The requirements can best be fulfilled by installing pytorch via anaconda. You can install PyTorch by following the ["Get Started"](https://pytorch.org/get-started/locally/) instructions on the official website.