Commit 781fcd5b authored by Ruslan Svirschevski's avatar Ruslan Svirschevski
Browse files

partially reverted 76b40a5c

parent c6d0a847
......@@ -571,9 +571,9 @@ def estimate_quantiles(A: Tensor, out: Tensor = None, offset: float = 1 / 512, n
class QuantState:
"""container for quantization state components to work with Params4bit and similar clases"""
valid_quant_types = ('fp4', 'nf4')
valid_qs_type_keys = [f"quant_state.bitsandbytes__{x}" for x in valid_quant_types]
valid_qs_keys = ['absmax', 'quant_map', 'nested_absmax', 'nested_quant_map', 'quant_state',
'quant_type', 'blocksize', 'dtype', 'shape', 'nested_blocksize', 'nested_dtype', 'nested_offset']
valid_qs_type_keys = [f"bitsandbytes__{x}" for x in valid_quant_types]
valid_qs_keys = ['absmax', 'quant_map', 'nested_absmax', 'nested_quant_map', 'quant_state', 'quant_type',
'blocksize', 'dtype', 'shape', 'nested_blocksize', 'nested_dtype', 'nested_offset']
def __init__(self, absmax, shape=None, code=None, blocksize=None, quant_type=None, dtype=None, offset=None, state2=None):
self.absmax = absmax
......@@ -611,16 +611,19 @@ class QuantState:
"""
# unpacking tensor with non-tensor components
qs_key = [k for k, v in qs_dict.items() if k in cls.valid_qs_type_keys and isinstance(v, torch.Tensor)]
qs_key = [k for k, v in qs_dict.items() if "quant_state" in k and isinstance(v, torch.Tensor)]
if not len(qs_key) and 'quant_type' not in qs_dict:
raise ValueError("Expected packed or unpacked quant_state items, found neither")
elif len(qs_key) != 1:
raise ValueError(f"There should be exaclly one quant_state item with key from {cls.valid_qs_type_keys}. Detected {len(qs_key)} such items")
elif len(qs_key) != 1 or qs_key[0].split(".")[-1] not in cls.valid_qs_type_keys:
raise ValueError(f"There should be exactly one `quant_state` item with ending from {cls.valid_qs_type_keys}.\nDetected {qs_key}.")
# unpacking minor and non-tensor quant state items if necessary
if len(qs_key) == 1:
qs_key = qs_key[0]
qs_dict |= unpack_tensor_to_dict(qs_dict.pop(qs_key))
qs_dict.update(unpack_tensor_to_dict(qs_dict.pop(qs_key)))
qs_dict = {k.split('.')[-1]: v for k, v in qs_dict.items()} # strip prefixes
assert set(qs_dict.keys()).issubset(cls.valid_qs_keys)
if 'nested_absmax' in qs_dict:
offset = torch.tensor(float(qs_dict['nested_offset'])).to(device)
......@@ -677,6 +680,7 @@ class QuantState:
def to(self, device):
# make sure the quantization state is on the right device
self.absmax = self.absmax.to(device)
self.offset = self.offset.to(device)
if self.nested:
self.offset = self.offset.to(device)
self.state2.absmax = self.state2.absmax.to(device)
......
......@@ -155,28 +155,38 @@ class Params4bit(torch.nn.Parameter):
return self
@classmethod
def from_state_dict(cls, state_dict, prefix="", requires_grad=False):
data = state_dict.pop(prefix.rstrip('.'))
def from_prequantized(cls, data, quantized_stats, requires_grad=False, device='cuda', **kwargs):
self = torch.Tensor._make_subclass(cls, data.to(device))
self.requires_grad = requires_grad
self.quant_state = QuantState.from_dict(qs_dict=quantized_stats, device=device)
self.blocksize = self.quant_state.blocksize
self.compress_statistics = self.quant_state.nested
self.quant_type = self.quant_state.quant_type
return self
# @classmethod
# def from_state_dict(cls, state_dict, prefix="", requires_grad=False):
# data = state_dict.pop(prefix.rstrip('.'))
# extracting components for QuantState from state_dict
qs_dict = {}
for k, v in state_dict.items():
if k.replace(prefix, '').split('.')[0] in QuantState.valid_qs_keys:
qs_dict[k] = v
state_dict = {k: v for k, v in state_dict.items() if k not in qs_dict}
qs_dict = {k.replace(prefix, ''): v for k, v in qs_dict.items()}
# # extracting components for QuantState from state_dict
# qs_dict = {}
# for k, v in state_dict.items():
# if k.replace(prefix, '').split('.')[0] in QuantState.valid_qs_keys:
# qs_dict[k] = v
# state_dict = {k: v for k, v in state_dict.items() if k not in qs_dict}
# qs_dict = {k.replace(prefix, ''): v for k, v in qs_dict.items()}
if data.device.type != "cuda":
raise ValueError(f"`data.device.type` must be 'cuda', detected {data.device.type}")
# if data.device.type != "cuda":
# raise ValueError(f"`data.device.type` must be 'cuda', detected {data.device.type}")
cls.requires_grad = requires_grad
cls.quant_state = QuantState.from_dict(qs_dict=qs_dict, device=data.device)
cls.blocksize = cls.quant_state.blocksize # this attribute can be deprecated - it duplicates same one in quant_state
cls.compress_statistics = cls.quant_state.nested # this attribute can be deprecated - it duplicates quant_state.nested
cls.quant_type = cls.quant_state.quant_type # this attribute can be deprecated - it duplicates same one in quant_state
# cls.requires_grad = requires_grad
# cls.quant_state = QuantState.from_dict(qs_dict=qs_dict, device=data.device)
# cls.blocksize = cls.quant_state.blocksize # this attribute can be deprecated - it duplicates same one in quant_state
# cls.compress_statistics = cls.quant_state.nested # this attribute can be deprecated - it duplicates quant_state.nested
# cls.quant_type = cls.quant_state.quant_type # this attribute can be deprecated - it duplicates same one in quant_state
self = torch.Tensor._make_subclass(cls, data=data.to(data.device))
return self, state_dict
# self = torch.Tensor._make_subclass(cls, data=data.to(data.device))
# return self, state_dict
def cuda(self, device):
w = self.data.contiguous().half().cuda(device)
......@@ -251,17 +261,17 @@ class Linear4bit(nn.Linear):
for k, v in self.weight.quant_state.as_dict(packed=True).items():
destination[prefix + "weight." + k] = v if keep_vars else v.detach()
def _load_from_state_dict(self, state_dict, prefix, local_metadata, strict,
missing_keys, unexpected_keys, error_msgs):
# Note: super()._load_from_state_dict() is not called here intentionally.
if self.bias is not None:
bias_data = state_dict.pop(prefix + "bias", None)
self.bias.data = bias_data.to(self.bias.data.device)
self.weight, state_dict = bnb.nn.Params4bit.from_state_dict(
state_dict, prefix=prefix + "weight" + ".", requires_grad=False
)
unexpected_keys.extend(state_dict.keys())
# def _load_from_state_dict(self, state_dict, prefix, local_metadata, strict,
# missing_keys, unexpected_keys, error_msgs):
# # Note: super()._load_from_state_dict() is not called here intentionally.
# if self.bias is not None:
# bias_data = state_dict.pop(prefix + "bias", None)
# self.bias.data = bias_data.to(self.bias.data.device)
# self.weight, state_dict = bnb.nn.Params4bit.from_state_dict(
# state_dict, prefix=prefix + "weight" + ".", requires_grad=False
# )
# unexpected_keys.extend(state_dict.keys())
def forward(self, x: torch.Tensor):
# weights are cast automatically as Int8Params, but the bias has to be cast manually
......
......@@ -7,8 +7,6 @@ import pytest
import torch
import bitsandbytes as bnb
from bitsandbytes import functional as F
from bitsandbytes.nn.modules import Linear4bit
@pytest.mark.skipif(not torch.cuda.is_available(), reason="this test requires a GPU")
......@@ -41,7 +39,10 @@ def test_linear_serialization(quant_type, compress_statistics, bias):
# saving to state_dict:
sd = linear_q.state_dict()
# restoring from state_dict:
bias_data2 = sd.pop("bias", None)
weight_data2 = sd.pop("weight")
weight2 = bnb.nn.Params4bit.from_prequantized(quantized_stats=sd, data=weight_data2)
# creating new layer with same params:
linear_q2 = bnb.nn.Linear4bit(
linear.in_features,
......@@ -53,7 +54,9 @@ def test_linear_serialization(quant_type, compress_statistics, bias):
device=device, # TODO create on meta device to save loading time
)
# loading weights from state_dict:
linear_q2.load_state_dict(sd)
linear_q2.weight = weight2.to(device)
if bias:
linear_q2.bias = torch.nn.Parameter(bias_data2)
# MATCHING
a, b = linear_q.weight, linear_q2.weight
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment