@@ -9,25 +9,40 @@ This guide provides a brief guide on how bitsandbytes supports storing quantized
...
@@ -9,25 +9,40 @@ This guide provides a brief guide on how bitsandbytes supports storing quantized
## Quantized data storage
## Quantized data storage
FSDP only supports sharding float data types which can be problematic because quantized weights are typically stored as integer data types (uint8). bitsandbytes doesn't have this problem because it uses `StoreChar` to read and write quantized weights regardless of the data type storage. This makes it simple to add a `quant_storage` parameter to the [`~nn.Linear4bit`] and [`~nn.Params4bit`] classes and set it to `torch.uint8` to maintain backward compatibility with the codebase.
FSDP only supports sharding float data types which can be problematic because quantized weights are typically stored as integer data types (uint8). bitsandbytes doesn't have this problem because it uses `StoreChar` to read and write quantized weights regardless of the data type storage. This makes it simple to add a `quant_storage` parameter to the [`~nn.Linear4bit`] and [`~nn.Params4bit`] classes and set it to `torch.uint8` to maintain backward compatibility with the codebase. With the `quant_storage` parameter, you can select any of the FSDP supported data types to shard [`~nn.Linear4bit`] with such as bfloat16, float16 or float32.
You'll typically access and configure this option from [`transformers.BitsAndBytesConfig`] by setting the `bnb_4bit_quant_storage` parameter. It is very **important** the `quant_storage` data type matches the data types used throughout the model because FSDP can only wrap layers and modules that have the *same floating data type*. Making sure the data types are aligned will ensure the model is correctly sharded.
> [!TIP]
> The `compute_dtype` is the data type used for computation inside the CUDA kernel, where the 4-bit quantized weights are unpacked from the data type in `quant_storage` and dequantized to `compute_dtype`. We recommend using torch.bfloat16 (if available on your hardware) for better numerical stability.
With the `quant_storage` parameter, you can select any of the FSDP supported data types to shard [`~nn.Linear4bit`] with such as bfloat16, float16 or float32.
Check out this [section](https://hf.co/docs/peft/main/en/accelerate/fsdp#use-peft-qlora-and-fsdp-for-finetuning-large-models-on-multiple-gpus) of the PEFT documentation for the config file and training code to run FSDP-QLoRA training.
## Training
## Training
bitsandbytes is deeply integrated with the Hugging Face ecosystem, making it easy to use with libraries like [Transformers](https://hf/co/docs/transformers), [PEFT](https://hf/co/docs/peft), and [TRL](https://hf/co/docs/trl).
> [!TIP]
> FSDP is a distributed training framework that needs to be launched as a distributed training job with a library like [Accelerate](https://hf.co/docs/accelerate/index) or [torchrun](https://pytorch.org/docs/stable/elastic/run.html). The launch command provided in this section uses Accelerate to launch the training script.
bitsandbytes is deeply integrated with the Hugging Face ecosystem, making it easy to use with libraries like [Transformers](https://hf.co/docs/transformers), [PEFT](https://hf.co/docs/peft), and [TRL](https://hf.co/docs/trl).
PEFT provides a configuration file ([fsdp_config_qlora.yaml](https://github.com/huggingface/peft/blob/main/examples/sft/configs/fsdp_config_qlora.yaml)), launch command ([run_peft_qlora_fsdp.sh](https://github.com/huggingface/peft/blob/main/examples/sft/run_peft_qlora_fsdp.sh)), and training script ([train.py](https://github.com/huggingface/peft/blob/main/examples/sft/train.py)) for running FSDP-QLoRA. To learn more, check out the [Use PEFT QLoRA and FSDP for finetuning large models on multiple GPUs](https://huggingface.co/docs/peft/main/en/accelerate/fsdp#use-peft-qlora-and-fsdp-for-finetuning-large-models-on-multiple-gpus) documentation. This section briefly covers the steps to run FSDP-QLoRA training.
Before you begin, make sure you have the latest libraries installed.
Before you begin, make sure you have the latest libraries installed.
...
@@ -35,9 +50,6 @@ Before you begin, make sure you have the latest libraries installed.
...
@@ -35,9 +50,6 @@ Before you begin, make sure you have the latest libraries installed.
> PEFT provides a configuration file ([fsdp_config_qlora.yaml](https://github.com/huggingface/peft/blob/main/examples/sft/configs/fsdp_config_qlora.yaml)), launch command ([run_peft_qlora_fsdp.sh](https://github.com/huggingface/peft/blob/main/examples/sft/run_peft_qlora_fsdp.sh)), and training script ([train.py](https://github.com/huggingface/peft/blob/main/examples/sft/train.py)) for FSDP-QLoRA. To learn more, check out the [Use PEFT QLoRA and FSDP for finetuning large models on multiple GPUs](https://huggingface.co/docs/peft/main/en/accelerate/fsdp#use-peft-qlora-and-fsdp-for-finetuning-large-models-on-multiple-gpus) documentation.
The important change that enables FSDP-QLoRA training is the `bnb_4bit_quant_storage` parameter in the [`~transformers.BitsAndBytesConfig`] class. This allows you to set the storage data type of the quantized weights to a float data type.
The important change that enables FSDP-QLoRA training is the `bnb_4bit_quant_storage` parameter in the [`~transformers.BitsAndBytesConfig`] class. This allows you to set the storage data type of the quantized weights to a float data type.