import math from logging import getLogger import numpy as np import torch import torch.nn as nn import transformers from ..triton_utils.mixin import TritonModuleMixin logger = getLogger(__name__) try: from ..triton_utils.dequant import QuantLinearFunction, quant_matmul_248 except ImportError as e: triton_import_exception = e def error_raiser_triton(*args, **kwargs): raise ValueError( f"Trying to use the triton backend, but could not import triton dependencies with the following error: {triton_import_exception}" ) class FakeTriton: def __getattr__(self, name): raise ImportError( f"Trying to use the triton backend, but could not import triton dependencies with the following error: {triton_import_exception}" ) quant_matmul_248 = error_raiser_triton QuantLinearFunction = FakeTriton QuantLinearInferenceOnlyFunction = FakeTriton class QuantLinear(nn.Module, TritonModuleMixin): """ Triton v2 quantized linear layer. Calls dequant kernel (see triton_utils/dequant) to dequantize the weights then uses torch.matmul to compute the output whereas original `triton` quantized linear layer fused dequant and matmul into single kernel.add() """ QUANT_TYPE = "tritonv2" def __init__( self, bits, group_size, infeatures, outfeatures, bias, trainable=False, **kwargs ): super().__init__() if bits not in [2, 4, 8]: raise NotImplementedError("Only 2,4,8 bits are supported.") if infeatures % 32 != 0 or outfeatures % 32 != 0: raise NotImplementedError( "in_feature and out_feature must be divisible by 32." ) self.infeatures = infeatures self.outfeatures = outfeatures self.bits = bits self.group_size = group_size if group_size != -1 else infeatures self.maxq = 2**self.bits - 1 self.register_buffer( "qweight", torch.zeros((infeatures // 32 * self.bits, outfeatures), dtype=torch.int32), ) self.register_buffer( "qzeros", torch.zeros( ( math.ceil(infeatures / self.group_size), outfeatures // 32 * self.bits, ), dtype=torch.int32, ), ) self.register_buffer( "scales", torch.zeros( (math.ceil(infeatures / self.group_size), outfeatures), dtype=torch.float16, ), ) self.register_buffer( "g_idx", torch.tensor( [i // self.group_size for i in range(infeatures)], dtype=torch.int32 ), ) if bias: self.register_buffer( "bias", torch.zeros((outfeatures), dtype=torch.float16) ) else: self.bias = None self.trainable = trainable def post_init(self): pass def pack(self, linear, scales, zeros, g_idx=None): W = linear.weight.data.clone() if isinstance(linear, nn.Conv2d): W = W.flatten(1) if isinstance(linear, transformers.pytorch_utils.Conv1D): W = W.t() self.g_idx = g_idx.clone() if g_idx is not None else self.g_idx scales = scales.t().contiguous() zeros = zeros.t().contiguous() scale_zeros = zeros * scales self.scales = scales.clone().half() if linear.bias is not None: self.bias = linear.bias.clone().half() intweight = [] for idx in range(self.infeatures): intweight.append( torch.round( (W[:, idx] + scale_zeros[self.g_idx[idx]]) / self.scales[self.g_idx[idx]] ).to(torch.int)[:, None] ) intweight = torch.cat(intweight, dim=1) intweight = intweight.t().contiguous() intweight = intweight.numpy().astype(np.uint32) i = 0 row = 0 qweight = np.zeros( (intweight.shape[0] // 32 * self.bits, intweight.shape[1]), dtype=np.uint32 ) while row < qweight.shape[0]: if self.bits in [2, 4, 8]: for j in range(i, i + (32 // self.bits)): qweight[row] |= intweight[j] << (self.bits * (j - i)) i += 32 // self.bits row += 1 else: raise NotImplementedError("Only 2,4,8 bits are supported.") qweight = qweight.astype(np.int32) self.qweight = torch.from_numpy(qweight) zeros -= 1 zeros = zeros.numpy().astype(np.uint32) qzeros = np.zeros( (zeros.shape[0], zeros.shape[1] // 32 * self.bits), dtype=np.uint32 ) i = 0 col = 0 while col < qzeros.shape[1]: if self.bits in [2, 4, 8]: for j in range(i, i + (32 // self.bits)): qzeros[:, col] |= zeros[:, j] << (self.bits * (j - i)) i += 32 // self.bits col += 1 else: raise NotImplementedError("Only 2,4,8 bits are supported.") qzeros = qzeros.astype(np.int32) self.qzeros = torch.from_numpy(qzeros) def forward(self, x): out_shape = x.shape[:-1] + (self.outfeatures,) quant_linear_fn = QuantLinearFunction out = quant_linear_fn.apply( x.reshape(-1, x.shape[-1]), self.qweight, self.scales, self.qzeros, self.g_idx, self.bits, self.maxq, ) out = out.half().reshape(out_shape) out = out + self.bias if self.bias is not None else out return out @classmethod def warmup(cls, model, transpose=False, seqlen=2048): """ Pre-tunes the quantized kernel """ from tqdm import tqdm kn_values = {} for _, m in model.named_modules(): if not isinstance(m, cls): continue k = m.infeatures n = m.outfeatures if (k, n) not in kn_values: kn_values[(k, n)] = ( m.qweight, m.scales, m.qzeros, m.g_idx, m.bits, m.maxq, ) logger.info(f"Found {len(kn_values)} unique KN Linear values.") logger.info("Warming up autotune cache ...") with torch.no_grad(): for m in tqdm(range(0, math.ceil(math.log2(seqlen)) + 1)): m = 2**m for (k, n), ( qweight, scales, qzeros, g_idx, bits, maxq, ) in kn_values.items(): a = torch.randn(m, k, dtype=torch.float16, device=model.device) quant_matmul_248(a, qweight, scales, qzeros, g_idx, bits, maxq) del kn_values __all__ = ["QuantLinear"]