import math from logging import getLogger import numpy as np import torch import torch.nn as nn import transformers try: import habana_frameworks.torch.core as htcore convert_from_uint4 = torch.ops.hpu.convert_from_uint4 except Exception as e: hpu_import_exception = e def error_raiser_hpu(*args, **kwargs): raise ValueError( f"Trying to use HPU, but could not import the HPU framework with the following error: {hpu_import_exception}" ) convert_from_uint4 = error_raiser_hpu logger = getLogger(__name__) def pack_tensor(input, bits = 4): normal = input.to(torch.int32) q = torch.zeros((normal.shape[0], normal.shape[1] // 32 * bits), dtype=torch.int32) i = 0 col = 0 while col < q.shape[1]: for j in range(i, i + (32 // bits)): q[:, col] |= normal[:, j] << (bits * (j - i)) i += 32 // bits col += 1 q = q.to(torch.int32) return q class QuantLinear(nn.Module): QUANT_TYPE = "hpu" def __init__( self, bits, group_size, infeatures, outfeatures, bias, use_cuda_fp16=True, kernel_switch_threshold=128, trainable=False, weight_dtype=torch.float16, ): logger.debug(f"qlinear_hpu QuantLinear::__init__ {bits=}, {group_size=}, {infeatures=}, {outfeatures=}, {bias=}, {use_cuda_fp16=}, {kernel_switch_threshold=}, {trainable=}, {weight_dtype=}") super().__init__() if bits != 4: raise NotImplementedError("Only 4 bits are supported.") self.infeatures = infeatures self.outfeatures = outfeatures self.bits = bits self.group_size = group_size if group_size != -1 else infeatures self.maxq = 2**self.bits - 1 self.register_buffer( "qweight", torch.zeros((infeatures // 32 * self.bits, outfeatures), dtype=torch.int32), ) self.register_buffer( "qzeros", torch.zeros( ( math.ceil(infeatures / self.group_size), outfeatures // 32 * self.bits, ), dtype=torch.int32, ), ) self.register_buffer( "scales", torch.zeros( (math.ceil(infeatures / self.group_size), outfeatures), dtype=weight_dtype, ), ) self.register_buffer( "g_idx", torch.tensor([i // self.group_size for i in range(infeatures)], dtype=torch.int32), ) if bias: self.register_buffer("bias", torch.zeros((outfeatures), dtype=weight_dtype)) else: self.bias = None self.half_indim = self.infeatures // 2 self.wf = torch.tensor(list(range(0, 32, self.bits)), dtype=torch.int32).unsqueeze(0) def _preprocessing(self): self.qweight = self.qweight.cpu() weight = self.unpack_weight_from_cuda_old_format() new_qweight = pack_tensor(weight) self.qweight = new_qweight.to('hpu') # TODO: Support group indexing and remove the check columns = self.qweight.shape[0] g_idx_trivial = [i // self.group_size for i in range(columns)] g_idx_trivial = torch.tensor(g_idx_trivial, dtype=torch.int32) assert torch.equal(self.g_idx, g_idx_trivial), "Non-trivial tensor g_idx is not supported" zeros = self.unpack_zeros_from_cuda_old_format().cpu() new_qzeros = pack_tensor(zeros) self.qzeros = new_qzeros.to('hpu') def post_init(self): self._preprocessing() def pack(self, linear, scales, zeros, g_idx): #TODO: implement raise NotImplementedError("QuantLinear HPU currently doesn't support packing") def set_packed(self, qlinear_cls): self.qweight = qlinear_cls.qweight self.qzeros = qlinear_cls.qzeros self.scales = qlinear_cls.scales self.bias = qlinear_cls.bias def forward(self, x): x_dtype = x.dtype out_shape = x.shape[:-1] + (self.outfeatures,) x = x.reshape(-1, x.shape[-1]) scales = self.scales qweight = self.qweight zeros = self.qzeros weight = convert_from_uint4(qweight, scales, zeros, x_dtype) out = torch.matmul(x, weight) out = out.reshape(out_shape) out = out + self.bias if self.bias is not None else out return out def unpack_zeros_from_cuda_old_format(self): zeros = torch.bitwise_right_shift( torch.unsqueeze(self.qzeros, 2).expand(-1, -1, 32 // self.bits), self.wf.unsqueeze(0), ).to(torch.int16 if self.bits == 8 else torch.int8) zeros = zeros + 1 zeros = torch.bitwise_and( zeros, (2**self.bits) - 1 ).to(self.scales.dtype) # NOTE: It appears that casting here after the `zeros = zeros + 1` is important. zeros = zeros.reshape(-1, zeros.shape[1] * zeros.shape[2]) return zeros def unpack_weight_from_cuda_old_format(self): weight = torch.bitwise_right_shift( torch.unsqueeze(self.qweight, 1).expand(-1, 32 // self.bits, -1), self.wf.unsqueeze(-1), ).to(torch.int16 if self.bits == 8 else torch.int8) weight = torch.bitwise_and(weight, (2**self.bits) - 1) weight = weight.reshape((weight.shape[0]*weight.shape[1], weight.shape[2])) return weight __all__ = ["QuantLinear"]