# Adapted from turboderp exllama: https://github.com/turboderp/exllamav2 import math from logging import getLogger import numpy as np import torch import torch.nn as nn import transformers logger = getLogger(__name__) try: from exllamav2_kernels import gemm_half_q_half, make_q_matrix except ImportError as e: exllama_v2_import_exception = e def error_raiser_exllama(*args, **kwargs): raise ValueError( f"Trying to use the exllama v2 backend, but could not import the C++/CUDA dependencies with the following error: {exllama_v2_import_exception}" ) make_q_matrix = error_raiser_exllama gemm_half_q_half = error_raiser_exllama # Dummy tensor to pass instead of g_idx since there is no way to pass "None" to a C++ extension none_tensor = torch.empty((1, 1), device="meta") def _torch_device(idx): if idx == -1: return "cpu" return f"cuda:{idx}" def ext_gemm_half_q_half(x, q_handle, q4_width, force_cuda): """Matrix multiplication, returns x @ q4""" output_shape = x.shape[:-1] + (q4_width,) x = x.view(-1, x.shape[-1]) output = torch.empty((x.shape[0], q4_width), dtype=torch.half, device=x.device) gemm_half_q_half(x, q_handle, output, force_cuda) return output.view(output_shape) def ext_make_q_matrix(w: dict, temp_dq, key: str = None): """ Create Q matrix """ # EXL2 # won't work as the moment because the tensors are not the same. if "q_weight" in w: w["q_scale_max"] /= 256 w["q_perm"] = w["q_perm"].short() w["q_invperm"] = w["q_invperm"].short() return make_q_matrix( w["q_weight"], w["q_perm"], w["q_invperm"], w["q_scale"], w["q_scale_max"], w["q_groups"], none_tensor, none_tensor, none_tensor, temp_dq, ) # GPTQ elif "qweight" in w: if w["scales"].dtype == torch.float: w["scales"] = w["scales"].half() # GPTQ with g_idx (act_order) if "g_idx" in w and not (w["g_idx"] == 0).all().item(): w["q_perm"] = torch.empty( (w["qweight"].shape[0] * 8,), dtype=torch.short, device=w["qweight"].device, ) w["q_invperm"] = torch.empty_like(w["q_perm"]) # make_q4 segfaults if g_idx is not on cpu in the act-order case. In the non act-order case, None needs to be passed for g_idx. return make_q_matrix( w["qweight"], w["q_perm"], w["q_invperm"], none_tensor, none_tensor, none_tensor, w["qzeros"], w["scales"], w["g_idx"].cpu(), temp_dq, ) # GPTQ without g_idx else: return make_q_matrix( w["qweight"], none_tensor, none_tensor, none_tensor, none_tensor, none_tensor, w["qzeros"], w["scales"], none_tensor, temp_dq, ) class QuantLinear(nn.Module): QUANT_TYPE = "exllamav2" """Linear layer implementation with per-group 4-bit quantization of the weights""" def __init__(self, bits, group_size, infeatures, outfeatures, bias, trainable=False, **kwargs): super().__init__() if bits != 4: raise ValueError( f"Exllamav2 kernel supports only bits=4, requested bits={bits}. Something is wrong in the model initialization." ) if trainable: raise NotImplementedError("Exllamav2 kernel does not support training.") self.q_handle = None self.q_tensors = None self.padding = -outfeatures % 32 self.outfeatures = outfeatures + self.padding outfeatures = self.outfeatures self.infeatures = infeatures self.bits = bits self.group_size = group_size if group_size != -1 else infeatures self.trainable = trainable self.maxq = 2**self.bits - 1 assert infeatures % 32 == 0 assert infeatures % self.group_size == 0 assert outfeatures % 32 == 0 # I need to register the tensors, otherwise, we won't be able to load them easily using transformers ... self.register_buffer( "qweight", torch.zeros((infeatures // 32 * self.bits, outfeatures), dtype=torch.int32), ) self.register_buffer( "qzeros", torch.zeros( ( math.ceil(infeatures / self.group_size), outfeatures // 32 * self.bits, ), dtype=torch.int32, ), ) self.register_buffer( "scales", torch.zeros( (math.ceil(infeatures / self.group_size), outfeatures), dtype=torch.float16, ), ) self.register_buffer( "g_idx", torch.tensor([i // self.group_size for i in range(infeatures)], dtype=torch.int32), ) if bias: self.register_buffer("bias", torch.zeros((outfeatures), dtype=torch.float16)) else: self.bias = None def post_init(self, temp_dq): assert self.qweight.device.type == "cuda" assert self.qweight.device.index is not None self.q_tensors = { "qweight": self.qweight, "qzeros": self.qzeros, "scales": self.scales, "g_idx": self.g_idx, } temp_dq = temp_dq.get_scratch_slice(self.temp_dq_size()) self.q_handle = ext_make_q_matrix(self.q_tensors, temp_dq) def pack(self, linear, scales, zeros, g_idx=None): W = linear.weight.data.clone() if isinstance(linear, nn.Conv2d): W = W.flatten(1) if isinstance(linear, transformers.pytorch_utils.Conv1D): W = W.t() self.g_idx = g_idx.clone() if g_idx is not None else self.g_idx scales = scales.t().contiguous() zeros = zeros.t().contiguous() scale_zeros = zeros * scales self.scales = scales.clone().half() if linear.bias is not None: self.bias = linear.bias.clone().half() intweight = [] for idx in range(self.infeatures): intweight.append( torch.round((W[:, idx] + scale_zeros[self.g_idx[idx]]) / self.scales[self.g_idx[idx]]).to(torch.int)[ :, None ] ) intweight = torch.cat(intweight, dim=1) intweight = intweight.t().contiguous() intweight = intweight.numpy().astype(np.uint32) i = 0 row = 0 qweight = np.zeros((intweight.shape[0] // 32 * self.bits, intweight.shape[1]), dtype=np.uint32) while row < qweight.shape[0]: if self.bits in [4]: for j in range(i, i + (32 // self.bits)): qweight[row] |= intweight[j] << (self.bits * (j - i)) i += 32 // self.bits row += 1 else: raise NotImplementedError("Only 4 bits are supported.") qweight = qweight.astype(np.int32) self.qweight = torch.from_numpy(qweight) zeros -= 1 zeros = zeros.numpy().astype(np.uint32) qzeros = np.zeros((zeros.shape[0], zeros.shape[1] // 32 * self.bits), dtype=np.uint32) i = 0 col = 0 while col < qzeros.shape[1]: if self.bits in [4]: for j in range(i, i + (32 // self.bits)): qzeros[:, col] |= zeros[:, j] << (self.bits * (j - i)) i += 32 // self.bits col += 1 else: raise NotImplementedError("Only 4 bits are supported.") qzeros = qzeros.astype(np.int32) self.qzeros = torch.from_numpy(qzeros) def forward(self, x, force_cuda=False): if x.dtype != torch.float16: logger.warning_once( f"The exllama v2 kernel for GPTQ requires a float16 input activation, while {x.dtype} was passed. Casting to float16.\nMake sure you loaded your model with torch_dtype=torch.float16, that the model definition does not inadvertently cast to float32, or disable AMP Autocast that may produce float32 intermediate activations in the model." ) x = x.half() output = ext_gemm_half_q_half(x, self.q_handle, self.outfeatures, force_cuda) if self.bias is not None: output.add_(self.bias) return output def temp_dq_size(self): return self.infeatures * self.outfeatures * 2 + 128 def temp_fwd_size(self, max_input_len, max_batch_size): return self.outfeatures * max_input_len * max_batch_size * 4 + 128 def scratch_space_fixed(self, max_input_len=2048, max_batch_size=8): return self.temp_dq_size() + self.temp_fwd_size(max_input_len, max_batch_size) class ExLlamaV2DeviceTensors: device_idx: int scratch_bytes: int scratch_idx: int scratch: torch.tensor = None def __init__(self, device_idx, scratch_bytes): self.device_idx = device_idx self.scratch_bytes = scratch_bytes def prepare(self): self.scratch = torch.empty( (self.scratch_bytes // 2,), dtype=torch.half, device=_torch_device(self.device_idx), ) def get_scratch_slice(self, size_bytes): if self.scratch is None: self.prepare() size_bytes = ((size_bytes + 127) // 128) * 128 size_half = size_bytes // 2 scratch_slice = self.scratch.narrow(0, 0, size_half) return scratch_slice