from .base import BaseAWQForCausalLM from transformers.models.gptj.modeling_gptj import GPTJForCausalLM, GPTJBlock class GPTJAWQForCausalLM(BaseAWQForCausalLM): layer_type = "GPTJBlock" max_seq_len_key = "n_positions" @staticmethod def get_model_layers(model: GPTJForCausalLM): return model.transformer.h @staticmethod def get_act_for_scaling(module: GPTJBlock): return dict( is_scalable=True, scale_name="mlp.act", scale_layer=module.mlp.act, scale_shape=module.mlp.fc_in.out_features, ) @staticmethod def move_embed(model: GPTJForCausalLM, device: str): model.transformer.wte = model.transformer.wte.to(device) @staticmethod def get_layers_for_scaling(module: GPTJBlock, input_feat, module_kwargs): layers = [] # attention input + linear 1 layers.append( dict( prev_op=module.ln_1, layers=[ module.attn.q_proj, module.attn.k_proj, module.attn.v_proj, module.mlp.fc_in, ], inp=input_feat["attn.q_proj"], module2inspect=module, kwargs=module_kwargs, ) ) # attention out layers.append( dict( prev_op=module.attn.v_proj, layers=[module.attn.out_proj], inp=input_feat["attn.out_proj"], ) ) # linear 2 layers.append( dict( prev_op=module.mlp.act, layers=[module.mlp.fc_out], inp=input_feat["mlp.fc_out"], ) ) return layers