from .base import BaseAWQForCausalLM from transformers.models.gpt_bigcode.modeling_gpt_bigcode import ( GPTBigCodeForCausalLM, GPTBigCodeBlock as OldGptBigCodeBlock, ) class GptBigCodeAWQForCausalLM(BaseAWQForCausalLM): layer_type = "GPTBigCodeBlock" max_seq_len_key = "n_positions" @staticmethod def get_model_layers(model: GPTBigCodeForCausalLM): return model.transformer.h @staticmethod def get_act_for_scaling(module: OldGptBigCodeBlock): return dict( is_scalable=True, scale_name="mlp.act", scale_layer=module.mlp.act, scale_shape=module.mlp.c_fc.out_features, ) @staticmethod def move_embed(model: GPTBigCodeForCausalLM, device): model.transformer.wte = model.transformer.wte.to(device) model.transformer.wpe = model.transformer.wpe.to(device) model.transformer.drop = model.transformer.drop.to(device) @staticmethod def get_layers_for_scaling(module: OldGptBigCodeBlock, input_feat, module_kwargs): layers = [] # attention input layers.append( dict( prev_op=module.ln_1, layers=[module.attn.c_attn], inp=input_feat["attn.c_attn"], module2inspect=module.attn, kwargs=module_kwargs, ) ) # linear 1 layers.append( dict( prev_op=module.ln_2, layers=[module.mlp.c_fc], inp=input_feat["mlp.c_fc"], module2inspect=module.mlp, ) ) # linear 2 layers.append( dict( prev_op=module.mlp.act, layers=[module.mlp.c_proj], inp=input_feat["mlp.c_proj"], ) ) return layers