from .base import BaseAWQForCausalLM from transformers.models.gpt_bigcode.modeling_gpt_bigcode import GPTBigCodeForCausalLM, GPTBigCodeBlock as OldGptBigCodeBlock class GptBigCodeAWQForCausalLM(BaseAWQForCausalLM): layer_type = "GPTBigCodeBlock" max_new_tokens_key = "n_positions" @staticmethod def fuse_layers(model: GPTBigCodeForCausalLM, quant_config:dict): # TODO: Fix single_query_attention pass # fuser = GptBigCodeFuser(model) # fuser.fuse_transformer() @staticmethod def get_model_layers(model: GPTBigCodeForCausalLM): return model.transformer.h @staticmethod def get_act_for_scaling(module: OldGptBigCodeBlock): return dict( is_scalable=True, scale_name="mlp.act", scale_layer=module.mlp.act, scale_shape=module.mlp.c_fc.out_features ) @staticmethod def move_embed(model: GPTBigCodeForCausalLM, device): model.transformer.wte = model.transformer.wte.to(device) model.transformer.drop = model.transformer.drop.to(device) @staticmethod def get_layers_for_scaling(module:OldGptBigCodeBlock, input_feat, module_kwargs): layers = [] # attention input layers.append(dict( prev_op=module.ln_1, layers=[module.attn.c_attn], inp=input_feat['attn.c_attn'], module2inspect=module.attn, kwargs=module_kwargs )) # linear 1 layers.append(dict( prev_op=module.ln_2, layers=[module.mlp.c_fc], inp=input_feat['mlp.c_fc'], module2inspect=module.mlp )) # linear 2 layers.append(dict( prev_op=module.mlp.act, layers=[module.mlp.c_proj], inp=input_feat['mlp.c_proj'] )) return layers from typing import List, Tuple from awq.modules.fused.block import GptBigCodeBlock from awq.modules.fused.model import GptBigCodeModel class GptBigCodeFuser: def __init__(self, model: GPTBigCodeForCausalLM): self.model = model self.blocks: List[Tuple[str, OldGptBigCodeBlock]] = [ (name, module) for name, module in self.model.named_modules() if isinstance(module, OldGptBigCodeBlock) ] def fuse_transformer(self): blocks = [] module: OldGptBigCodeBlock for module in self.model.transformer.h: blocks.append(GptBigCodeBlock( self.model.config.n_embd, self.model.config.n_head, module.attn.c_attn, module.attn.c_proj, module.mlp, module.ln_1, module.ln_2, next(iter(module.state_dict().values())).device, self.model.config.n_positions )) self.model.transformer = GptBigCodeModel( self.model.config.vocab_size, blocks, self.model.transformer.wte, self.model.transformer.wpe, self.model.transformer.ln_f, )