from .base import BaseAWQForCausalLM from typing import Dict from transformers.models.gpt_neox.modeling_gpt_neox import GPTNeoXLayer, GPTNeoXForCausalLM class GPTNeoXAWQForCausalLM(BaseAWQForCausalLM): layer_type = "GPTNeoXDecoderLayer" max_new_tokens_key = "max_position_embeddings" @staticmethod def get_model_layers(model: GPTNeoXForCausalLM): return model.gpt_neox.layers @staticmethod def get_act_for_scaling(module: GPTNeoXLayer): return dict( is_scalable=True, scale_name="mlp.act", scale_layer=module.mlp.act, scale_shape=module.mlp.dense_h_to_4h.out_features, ) @staticmethod def move_embed(model: GPTNeoXForCausalLM, device: str): model.gpt_neox.embed_in = model.gpt_neox.embed_in.to(device) @staticmethod def get_layers_for_scaling(module: GPTNeoXLayer, input_feat, module_kwargs): layers = [] # attention input layers.append(dict( prev_op=module.input_layernorm, layers=[module.attention.query_key_value], inp=input_feat['attention.query_key_value'], )) # # attention out # layers.append(dict( # prev_op=module.attention.query_key_value, # layers=[module.attention.dense], # inp=input_feat['attention.dense'], # )) # NOTE: assumes "use_parallel_residual": false # linear 1 layers.append(dict( prev_op=module.post_attention_layernorm, layers=[module.mlp.dense_h_to_4h], inp=input_feat['mlp.dense_h_to_4h'], )) # linear 2 layers.append(dict( prev_op=module.mlp.act, layers=[module.mlp.dense_4h_to_h], inp=input_feat['mlp.dense_4h_to_h'], )) return layers