import os import math import torch import torch.nn as nn from torch.nn import functional as F from awq.modules.fused.cache import WindowedCache from awq.utils.fused_utils import get_attention_shapes try: import ft_inference_engine FT_INSTALLED = True except: FT_INSTALLED = False class RoPE(nn.Module): def __init__(self, hidden_size, n_heads, max_seq_len, device): super(RoPE, self).__init__() self.freqs_cis = nn.Parameter( self.precompute_freqs_cis(hidden_size // n_heads, max_seq_len * 2).to(device), requires_grad=False ) @staticmethod def precompute_freqs_cis(dim: int, end: int, theta=10000.0): freqs = 1.0 / (theta ** (torch.arange(0, dim, 2)[: (dim // 2)].float() / dim)) t = torch.arange(end) freqs = torch.outer(t, freqs).float() freqs_cis = torch.polar(torch.ones_like(freqs), freqs) return freqs_cis @staticmethod def reshape_for_broadcast(freqs_cis: torch.Tensor, x: torch.Tensor): ndim = x.ndim assert 0 <= 1 < ndim assert freqs_cis.shape == (x.shape[1], x.shape[-1]) shape = [d if i == 1 or i == ndim - 1 else 1 for i, d in enumerate(x.shape)] return freqs_cis.view(*shape) def forward(self, xq: torch.Tensor, xk: torch.Tensor, start_pos: int, seqlen: int): xq_ = torch.view_as_complex( xq.float().reshape(*xq.shape[:-1], 2, -1).transpose(-2, -1).contiguous() ) xk_ = torch.view_as_complex( xk.float().reshape(*xk.shape[:-1], 2, -1).transpose(-2, -1).contiguous() ) freqs_cis = self.freqs_cis[start_pos : start_pos + seqlen] freqs_cis = self.reshape_for_broadcast(freqs_cis, xq_).to(xq_.device) xq_out = torch.view_as_real(xq_ * freqs_cis).transpose(-2, -1).flatten(3) xk_out = torch.view_as_real(xk_ * freqs_cis).transpose(-2, -1).flatten(3) return xq_out.type_as(xq), xk_out.type_as(xk) class ALiBi(nn.Module): def __init__(self, n_heads, max_seq_len, device, alibi_bias_max=8): super(ALiBi, self).__init__() # Initialize ALiBi slopes and bias slopes, bias = self.build_alibi_bias(n_heads, max_seq_len, alibi_bias_max=alibi_bias_max) self.slopes = nn.Parameter(slopes.float().to(device), requires_grad=False) self.bias = nn.Parameter(bias.float().to(device), requires_grad=False) @staticmethod def gen_slopes(n_heads, alibi_bias_max=8): _n_heads = 2 ** math.ceil(math.log2(n_heads)) m = torch.arange(1, _n_heads + 1, dtype=torch.float32) m = m.mul(alibi_bias_max / _n_heads) slopes = 1.0 / torch.pow(2, m) if _n_heads != n_heads: slopes = torch.cat([slopes[1::2], slopes[::2]])[:n_heads] return slopes.view(1, n_heads, 1, 1) @staticmethod def build_alibi_bias(n_heads, seq_len, alibi_bias_max=8, dtype=torch.float32): alibi_bias = torch.arange(1 - seq_len, 1, dtype=torch.int32).view(1, 1, 1, seq_len) slopes = ALiBi.gen_slopes(n_heads, alibi_bias_max) alibi_bias = alibi_bias * slopes slopes = slopes.squeeze(0).squeeze(-1).squeeze(-1) return slopes.to(dtype=dtype), alibi_bias.to(dtype=dtype) def forward(self, scores, seqlen): scores += self.bias[..., :seqlen] return scores class QuantAttentionFused(nn.Module): def __init__(self, hidden_size, n_heads, n_kv_heads, qkv_layer, o_proj, dev, max_seq_len, use_alibi=False, attention_shapes=None): super().__init__() self.hidden_size = hidden_size self.n_heads = n_heads self.n_kv_heads = n_kv_heads self.n_kv_groups = n_heads // n_kv_heads if n_kv_heads != 0 else 0 self.head_dim = self.hidden_size // n_heads self.qkv_proj = qkv_layer self.o_proj = o_proj self.start_pos = 0 self.use_alibi = use_alibi self.cache_batch_size = int(os.getenv("AWQ_BATCH_SIZE", "1")) self.max_seq_len = max_seq_len # attention shapes for self attention self.attention_shapes = get_attention_shapes( attention_shapes, max_seq_len, self.cache_batch_size, n_heads, n_kv_heads, self.head_dim ) # cache store that rolls cache self.cache = WindowedCache( self.attention_shapes["cache_v"], self.attention_shapes["cache_k"], self.max_seq_len, dev ) if use_alibi: self.alibi = ALiBi(n_heads, max_seq_len, dev) self.rotary_dim = 0 self.is_neox = False else: self.alibi = None self.rope = RoPE(hidden_size, n_heads, max_seq_len, dev) self.rotary_dim = self.head_dim self.is_neox = True def forward(self, hidden_states:torch.Tensor, attention_mask=None, *args, **kwargs): bsz, seqlen, _ = hidden_states.shape # Check if we are under transformers caching regime has_past_key_value = kwargs is not None and "past_key_value" in kwargs and kwargs["past_key_value"] is not None if has_past_key_value: # In newest transformers version, when using caching the input hidden states do not consist of # the last generated token only, but of the whole sequence - past-kvlength. We need to slice the last token # and set `seqlen=1` if seqlen > 1: seqlen = 1 hidden_states = hidden_states[:, -1:] if bsz != self.cache_batch_size: raise RuntimeError( f"Batch size is incorrectly set - input batch size {bsz}, kv-cache batch size {self.cache_batch_size}. " f"Use: AutoAWQForCausalLM.from_quantized(batch_size={bsz})" ) will_cache_be_exceeded = self.start_pos + seqlen > self.max_seq_len # Reset and avoid retaining state when processing context if will_cache_be_exceeded and seqlen > 1: self.start_pos = self.cache.roll_kv_n_steps(self.start_pos, n=self.start_pos) # Slowly roll out old tokens without performance hit if exceeded during decoding elif will_cache_be_exceeded and seqlen == 1: self.start_pos = self.cache.roll_kv_n_steps(self.start_pos, n=100) xqkv = self.qkv_proj(hidden_states) xqkv = xqkv.view((bsz, seqlen) + self.attention_shapes["xqkv_view"]) xq = self.attention_shapes["xq_slice"](xqkv) xk = self.attention_shapes["xk_slice"](xqkv) xv = self.attention_shapes["xv_slice"](xqkv) if seqlen > 1 or not FT_INSTALLED: xq = xq.view((bsz, seqlen) + self.attention_shapes["xq_view"]) xk = xk.view((bsz, seqlen) + self.attention_shapes["xk_view"]) xv = xv.view((bsz, seqlen) + self.attention_shapes["xv_view"]) if not self.use_alibi: xq, xk = self.rope.forward(xq, xk, self.start_pos, seqlen) self.cache.to(xq) values_store = xv.transpose(2, 1) keys_store = ( xk.reshape((bsz, seqlen) + self.attention_shapes["xk_reshape"]) .permute(0, 2, 3, 1, 4) .contiguous() ) self.cache.update_kv(values_store, keys_store, bsz, self.start_pos, seqlen) # Only necessary to retrieve from cache when we are not processing context if seqlen == 1: xv, xk = self.cache.get_kv(bsz, self.start_pos, seqlen, self.head_dim) keys = xk values = xv if self.n_kv_groups != 0: keys = torch.repeat_interleave(keys, dim=2, repeats=self.n_kv_groups) values = torch.repeat_interleave(values, dim=2, repeats=self.n_kv_groups) xq = xq.transpose(1, 2) keys = keys.transpose(1, 2) values = values.transpose(1, 2) scores = torch.matmul(xq, keys.transpose(2, 3)) / math.sqrt(self.head_dim) if self.use_alibi: scores = self.alibi.forward(scores, seqlen) # When seqlen is 1, there is nothing else to attend to if attention_mask is not None and seqlen > 1: scores = scores + attention_mask # (bs, n_local_heads, slen, cache_len + slen) scores = F.softmax(scores.float(), dim=-1).type_as(xq) output = torch.matmul(scores, values) # (bs, n_local_heads, slen, head_dim) attention_weight = output.transpose(1, 2).contiguous().view(bsz, seqlen, -1) else: xq = xq.view((bsz,) + self.attention_shapes["single_xq_view"]) xk = xk.view((bsz,) + self.attention_shapes["single_xk_view"]) xv = xv.view((bsz,) + self.attention_shapes["single_xv_view"]) alibi_slopes = self.alibi.slopes if self.alibi is not None else None attention_weight = ft_inference_engine.single_query_attention( xq, # query xk, # key xv, # value self.cache.k, # key cache self.cache.v, # value cache None, # length per sample alibi_slopes, # alibi slopes self.start_pos, # timestep self.rotary_dim, # rotary embedding dimension 10000, # rotary embedding base self.is_neox, # is neox ) attention_weight = attention_weight.reshape(bsz, 1, -1) attn_output = self.o_proj(attention_weight) self.start_pos += seqlen # past_key_value is replaced with cache_v, cache_k, returning empty data past_key_value = [torch.Tensor([ [ [[0]], [[0]], [[0]] ] ])] return attn_output, attention_weight, past_key_value