import torch import torch.nn as nn from typing import List from transformers.modeling_outputs import BaseModelOutputWithPast from awq.utils.fused_utils import prepare_attention_mask, prepare_input_ids from awq.modules.fused.block import MPTBlock, FalconDecoderLayer, LlamaLikeBlock class LlamaLikeModel(nn.Module): """ LlamaLikeModel is intended to be reused across models that have an architecture that closely resembles Llama, e.g. Mistral and Aquila. """ def __init__(self, vocab_size, blocks, embedding, norm): super().__init__() self.vocab_size = vocab_size self.embedding = embedding self.blocks: List[LlamaLikeBlock] = blocks self.norm = norm self.last_forward_num_tokens = 0 @torch.inference_mode() def forward(self, input_ids: torch.Tensor, attn_bias=None, attention_mask=None, is_causal=None, *args, **kwargs): input_ids, self.last_forward_num_tokens = prepare_input_ids( input_ids, self.last_forward_num_tokens ) _bsz, seqlen = input_ids.shape h = self.embedding(input_ids) mask = prepare_attention_mask( seqlen=seqlen, start_pos=self.blocks[0].attn.start_pos, device=input_ids.device, type_as=h ) for layer in self.blocks: h, _, past_key_value = layer(h, None, attention_mask=mask, is_causal=is_causal) h = self.norm(h) return BaseModelOutputWithPast(last_hidden_state=h, past_key_values=past_key_value, hidden_states=(), attentions=()) class MPTModel(nn.Module): def __init__(self, vocab_size, blocks, wte, norm_f): super().__init__() self.vocab_size = vocab_size self.wte = wte self.blocks: List[MPTBlock] = nn.ModuleList(blocks) self.norm_f = norm_f self.attn_uses_sequence_id = False self.prefix_lm = False self.last_forward_num_tokens = 0 @torch.inference_mode() def forward(self, input_ids, attn_bias=None, attention_mask=None, is_causal=None, *args, **kwargs): input_ids, self.last_forward_num_tokens = prepare_input_ids( input_ids, self.last_forward_num_tokens ) _bsz, seqlen = input_ids.shape h = self.wte(input_ids) mask = prepare_attention_mask( seqlen=seqlen, start_pos=self.blocks[0].attn.start_pos, device=input_ids.device, type_as=h ) for layer in self.blocks: h, _, past_key_value = layer(h, None, attention_mask=mask, is_causal=is_causal) h = self.norm_f(h) return BaseModelOutputWithPast(last_hidden_state=h, past_key_values=past_key_value, hidden_states=(), attentions=()) class FalconModel(nn.Module): def __init__(self, vocab_size, blocks, word_embeddings, ln_f): super().__init__() self.vocab_size = vocab_size self.word_embeddings = word_embeddings self.blocks: List[FalconDecoderLayer] = nn.ModuleList(blocks) self.ln_f = ln_f self.attn_uses_sequence_id = False self.prefix_lm = False self.last_forward_num_tokens = 0 @torch.inference_mode() def forward(self, input_ids, attn_bias=None, attention_mask=None, is_causal=None, *args, **kwargs): input_ids, self.last_forward_num_tokens = prepare_input_ids( input_ids, self.last_forward_num_tokens ) _bsz, seqlen = input_ids.shape h = self.word_embeddings(input_ids) mask = prepare_attention_mask( seqlen=seqlen, start_pos=self.blocks[0].attn.start_pos, device=input_ids.device, type_as=h ) for layer in self.blocks: h, _, past_key_value = layer(h, None, attention_mask=mask, is_causal=is_causal) h = self.ln_f(h) return BaseModelOutputWithPast(last_hidden_state=h, past_key_values=past_key_value, hidden_states=(), attentions=())