import tqdm from typing import List, Tuple from .base import BaseAWQForCausalLM from awq.utils.fused_utils import fuse_qkv from awq.modules.fused.block import LlamaLikeBlock from awq.modules.fused.model import LlamaLikeModel from transformers.models.mistral.modeling_mistral import ( MistralDecoderLayer as OldMistralDecoderLayer, MistralForCausalLM as OldMistralForCausalLM ) from awq.modules.fused.mlp import QuantLlamaMLP from awq.modules.fused.norm import FasterTransformerRMSNorm class MistralAWQForCausalLM(BaseAWQForCausalLM): layer_type = "MistralDecoderLayer" max_new_tokens_key = "max_position_embeddings" @staticmethod def fuse_layers(model: OldMistralForCausalLM): fuser = MistralFuser(model) fuser.fuse_transformer() @staticmethod def get_model_layers(model: OldMistralForCausalLM): return model.model.layers @staticmethod def get_act_for_scaling(module: OldMistralDecoderLayer): return dict( is_scalable=False ) @staticmethod def move_embed(model: OldMistralForCausalLM, device: str): model.model.embed_tokens = model.model.embed_tokens.to(device) @staticmethod def get_layers_for_scaling(module: OldMistralDecoderLayer, input_feat, module_kwargs): layers = [] # attention input layers.append(dict( prev_op=module.input_layernorm, layers=[module.self_attn.q_proj, module.self_attn.k_proj, module.self_attn.v_proj], inp=input_feat['self_attn.q_proj'], module2inspect=module.self_attn, kwargs=module_kwargs, )) # attention out # Please refer to https://github.com/mit-han-lab/llm-awq/pull/67#issue-1850622696 if module.self_attn.v_proj.weight.shape == module.self_attn.o_proj.weight.shape: layers.append(dict( prev_op=module.self_attn.v_proj, layers=[module.self_attn.o_proj], inp=input_feat['self_attn.o_proj'], )) # linear 1 layers.append(dict( prev_op=module.post_attention_layernorm, layers=[module.mlp.gate_proj, module.mlp.up_proj], inp=input_feat['mlp.gate_proj'], module2inspect=module.mlp, )) # linear 2 layers.append(dict( prev_op=module.mlp.up_proj, layers=[module.mlp.down_proj], inp=input_feat['mlp.down_proj'], )) return layers class MistralFuser: def __init__(self, model: OldMistralForCausalLM): self.model = model self.mistral_blocks: List[Tuple[str, OldMistralDecoderLayer]] = [ (name, module) for name, module in self.model.named_modules() if 'MistralDecoderLayer'.lower() in module.__class__.__name__.lower() ] def fuse_transformer(self): blocks = [] module: OldMistralDecoderLayer for module in tqdm.tqdm(self.model.model.layers, desc="Fusing layers..."): device = next(iter(module.state_dict().values())).device qkv = fuse_qkv( module, module.self_attn.q_proj, module.self_attn.k_proj, module.self_attn.v_proj ) mlp = QuantLlamaMLP( module.mlp.gate_proj, module.mlp.down_proj, module.mlp.up_proj ) norm_1 = FasterTransformerRMSNorm( module.input_layernorm.weight, module.input_layernorm.variance_epsilon ) norm_2 = FasterTransformerRMSNorm( module.post_attention_layernorm.weight, module.post_attention_layernorm.variance_epsilon ) blocks.append(LlamaLikeBlock( hidden_size=self.model.config.hidden_size, n_heads=self.model.config.num_attention_heads, n_kv_heads=self.model.config.num_key_value_heads, qkv_layer=qkv, o_proj=module.self_attn.o_proj, mlp=mlp, norm_1=norm_1, norm_2=norm_2, dev=device, max_seq_len=self.model.config.max_new_tokens )) self.model.model = LlamaLikeModel( self.model.config.vocab_size, blocks, self.model.model.embed_tokens, self.model.model.norm, )