# TinyChat: Efficient and Lightweight Chatbot with AWQ We introduce TinyChat, a cutting-edge chatbot interface designed for lightweight resource consumption and fast inference speed on GPU platforms. It allows for seamless deployment on consumer-level GPUs such as 3090/4090 and low-power edge devices like the NVIDIA Jetson Orin, empowering users with a responsive conversational experience like never before. The current release supports: - LLaMA-2-7B/13B-chat; - Vicuna; - MPT-chat; - Falcon-instruct. ## Contents - [Examples](#examples) - [Benchmarks](#benchmarks) - [Usage](#usage) - [Reference](#reference) ## Examples Thanks to AWQ, TinyChat can now deliver more prompt responses through 4-bit inference. The following examples showcase that TinyChat's W4A16 generation is 2.3x faster on RTX 4090 and 1.4x faster on Jetson Orin, compared to the FP16 baselines. (Tested with [LLaMA-2-7b]( https://huggingface.co/meta-llama/Llama-2-7b-chat-hf ) model.) * TinyChat on RTX 4090: ![TinyChat on RTX 4090: W4A16 is 2.3x faster than FP16](./figures/4090_example.gif) * TinyChat on Jetson Orin: ![TinyChat on Jetson Orin: W4A16 is 1.4x faster than FP16](./figures/orin_example.gif) ## Benchmarks We benchmark TinyChat on A6000 (server-class GPU), 4090 (desktop GPU) and Orin (edge GPU). We use the default implementation from Huggingface for the FP16 baseline. The INT4 implementation applies AWQ and utilizes our fast W4A16 GPU kernel. Please notice that the end-to-end runtime for INT4 TinyChat could be further improved if we reduce the framework overhead from Huggingface (e.g. utilizing the implementation from TGI). The latency reported in all tables are per-token latency for the generation stage. ### A6000 Results | Model | FP16 latency (ms) | INT4 latency (ms) | Speedup | | ----------- |:-----------------:|:-----------------:|:-------:| | LLaMA-2-7B | 27.14 | 12.44 | 2.18x | | LLaMA-2-13B | 47.28 | 20.28 | 2.33x | | Vicuna-7B | 26.06 | 12.43 | 2.10x | | Vicuna-13B | 44.91 | 17.30 | 2.60x | | MPT-7B | 22.79 | 16.87 | 1.35x | | MPT-30B | OOM | 31.57 | -- | | Falcon-7B | 39.44 | 27.34 | 1.44x | ### 4090 Results | Model | FP16 latency (ms) | INT4 latency (ms) | Speedup | | ----------- |:-----------------:|:-----------------:|:-------:| | LLaMA-2-7B | 19.97 | 8.66 | 2.31x | | LLaMA-2-13B | OOM | 13.54 | -- | | Vicuna-7B | 19.09 | 8.61 | 2.22x | | Vicuna-13B | OOM | 12.17 | -- | | MPT-7B | 17.09 | 12.58 | 1.36x | | MPT-30B | OOM | 23.54 | -- | | Falcon-7B | 29.91 | 19.84 | 1.51x | ### Orin Results | Model | FP16 latency (ms) | INT4 latency (ms) | Speedup | | ----------- |:-----------------:|:-----------------:|:-------:| | LLaMA-2-7B | 104.71 | 75.11 | 1.39x | | LLaMA-2-13B | OOM | 136.81 | -- | | Vicuna-7B | 93.12 | 65.34 | 1.43x | | Vicuna-13B | OOM | 115.4 | -- | | MPT-7B | 89.85 | 67.36 | 1.33x | | Falcon-7B | 147.84 | 102.74 | 1.44x | ## Usage 1. Please follow the [AWQ installation guidance](https://github.com/mit-han-lab/llm-awq#readme) to install AWQ and its dependencies. 2. Download the pretrained instruction-tuned LLMs: - For LLaMA-2-chat, please refer to [this link](https://huggingface.co/meta-llama/Llama-2-7b-chat-hf); - For Vicuna, please refer to [this link](https://huggingface.co/lmsys/); - For MPT-chat, please refer to [this link](https://huggingface.co/mosaicml/mpt-7b-chat); - For Falcon-instruct, please refer to [this link](https://huggingface.co/tiiuae/falcon-7b-instruct). 3. Quantize instruction-tuned LLMs with AWQ: - We provide pre-computed AWQ search results for multiple model families, including LLaMA, OPT, Vicuna, and LLaVA. To get the pre-computed AWQ search results, run: ```bash # git lfs install # install git lfs if not already git clone https://huggingface.co/datasets/mit-han-lab/awq-model-zoo awq_cache ``` - You may run a one-line starter below: ```bash ./scripts/llama2_demo.sh ``` Alternatively, you may go through the process step by step. We will demonstrate the quantization process with LLaMA-2. For all other models except Falcon, one only needs to change the `model_path` and saving locations. For Falcon-7B, we also need to change `q_group_size` from 128 to 64. - Perform AWQ search and save search results (we already did it for you): ```bash mkdir awq_cache python -m awq.entry --model_path /PATH/TO/LLAMA2/llama-2-7b-chat \ --w_bit 4 --q_group_size 128 \ --run_awq --dump_awq awq_cache/llama-2-7b-chat-w4-g128.pt ``` - Generate real quantized weights (INT4): ```bash mkdir quant_cache python -m awq.entry --model_path /PATH/TO/LLAMA2/llama-2-7b-chat \ --w_bit 4 --q_group_size 128 \ --load_awq awq_cache/llama-2-7b-chat-w4-g128.pt \ --q_backend real --dump_quant quant_cache/llama-2-7b-chat-w4-g128-awq.pt ``` 4. Run the TinyChat demo: ```bash cd tinychat python demo.py --model_type llama \ --model_path /PATH/TO/LLAMA2/llama-2-7b-chat \ --q_group_size 128 --load_quant quant_cache/llama-2-7b-chat-w4-g128-awq.pt \     --precision W4A16 ``` Note: if you use Falcon-7B-instruct, please remember to also change `q_group_size` to 64. You may also run the following command to execute the chatbot in FP16 to compare the speed and quality of language generation: ```bash python demo.py --model_type llama \ --model_path /PATH/TO/LLAMA2/llama-2-7b-chat \ --precision W16A16 ``` ## Reference TinyChat is inspired by the following open-source projects: [FasterTransformer](https://github.com/NVIDIA/FasterTransformer), [vLLM](https://github.com/vllm-project/vllm), [FastChat](https://github.com/lm-sys/FastChat).