from awq import AutoAWQForCausalLM from transformers import AutoTokenizer model_path = 'lmsys/vicuna-7b-v1.5' quant_path = 'vicuna-7b-v1.5-awq-marlin' quant_config = { "zero_point": False, "q_group_size": 128, "w_bit": 4, "version": "Marlin" } # Load model # NOTE: pass safetensors=True to load safetensors model = AutoAWQForCausalLM.from_pretrained( model_path, **{"low_cpu_mem_usage": True, "use_cache": False} ) tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True) # Quantize model.quantize(tokenizer, quant_config=quant_config) # Save quantized model model.save_quantized(quant_path) tokenizer.save_pretrained(quant_path) print(f'Model is quantized and saved at "{quant_path}"')