import os import torch import argparse from lm_eval import evaluator from transformers import AutoTokenizer from awq.models.auto import AutoAWQForCausalLM from awq.quantize.auto_clip import apply_clip from awq.quantize.auto_scale import apply_scale from awq.utils.lm_eval_adaptor import LMEvalAdaptor def load_search_result_into_memory(model, search_path): awq_results = torch.load(search_path, map_location="cpu") apply_scale(model, awq_results["scale"]) apply_clip(model, awq_results["clip"]) def run_search(model_path, dump_path, quant_config): """ Step 1/2: Search the pile for an optimal scaling factor. """ # Load model model = AutoAWQForCausalLM.from_pretrained(model_path) tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True) # Quantize model.quantize(tokenizer, quant_config=quant_config, run_search=True, run_quant=False) # Save search results model.save_quantized(dump_path) # Save tokenizer tokenizer.save_pretrained(dump_path) def run_quant(model_path, search_path, dump_path, quant_config): """ Step 2/2: Use the search results to quantize model weights """ # Load model and search results model = AutoAWQForCausalLM.from_pretrained(model_path) load_search_result_into_memory(model.model, search_path) # Run actual weight quantization model.quantize(quant_config=quant_config, run_search=False, run_quant=True) # Save quantized model model.save_quantized(dump_path) def run_eval(model_path, quant_file, device, tasks, task_batch_size, task_n_shot, task_use_pretrained): """ Post quantization: Evaluate perplexity on wikitext with EleutherAI Evaluation Harness """ # Load model if task_use_pretrained: model = AutoAWQForCausalLM.from_pretrained(model_path) else: model = AutoAWQForCausalLM.from_quantized(model_path, quant_file) tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True) # Load adapter lm_eval_model = LMEvalAdaptor(model_path, model, tokenizer, device, batch_size=task_batch_size) # Evaluate perplexity of quantized model results = evaluator.simple_evaluate( model=lm_eval_model, tasks=tasks.split(','), batch_size=task_batch_size, no_cache=True, num_fewshot=task_n_shot, ) print(evaluator.make_table(results)) if __name__ == '__main__': """ - Run AWQ search and save result: python -m awq.entry --entry_type search --model_path lmsys/vicuna-7b-v1.5 --search_path vicuna-7b-v1.5-awq - Run AWQ to save the real quantized weights at the quant_path: python -m awq.entry --entry_type quant --model_path lmsys/vicuna-7b-v1.5 --search_path vicuna-7b-v1.5-awq/awq_model_search_result.pt --quant_path vicuna-7b-v1.5-awq - Run perplexity of quantized model: python -m awq.entry --entry_type eval --model_path vicuna-7b-v1.5-awq --quant_file awq_model_w4_g128.pt - Run perplexity unquantized FP16 model: python -m awq.entry --entry_type eval --model_path lmsys/vicuna-7b-v1.5 --task_use_pretrained """ parser = argparse.ArgumentParser() parser.add_argument('--entry_type', type=str, help='The type of task to run (search|quant|eval)') parser.add_argument('--model_path', type=str, help='Path to hf model') parser.add_argument('--search_path', type=str, help='Path to save/load AWQ search results') parser.add_argument('--quant_path', type=str, help='Path to save AWQ model to directory') parser.add_argument('--quant_file', type=str, help='Path to quantized AWQ model file') parser.add_argument('--device', type=str, default='cuda:0', help='Device to load model to') parser.add_argument('--w_bit', type=int, default=4) parser.add_argument('--q_group_size', type=int, default=128) parser.add_argument('--tasks', type=str, default='wikitext', help='Tasks to evaluate. ' 'Separate tasks by comma for multiple tasks.' 'https://github.com/EleutherAI/lm-evaluation-harness/blob/master/docs/task_table.md') parser.add_argument("--task_use_pretrained", default=False, action=argparse.BooleanOptionalAction, help="Pass '--task_use_pretrained' to use a pretrained model running FP16") parser.add_argument('--task_batch_size', type=int, default=1) parser.add_argument('--task_n_shot', type=int, default=0) args = parser.parse_args() quant_config = { "zero_point": True, "q_group_size": args.q_group_size, "w_bit": args.w_bit } if args.entry_type == 'search': run_search(args.model_path, args.search_path, quant_config) elif args.entry_type == 'quant': run_quant(args.model_path, args.search_path, args.quant_path, quant_config) elif args.entry_type == 'eval': run_eval(args.model_path, args.quant_file, args.device, args.tasks, args.task_batch_size, args.task_n_shot, args.task_use_pretrained) else: raise Exception('--entry_type must be one of (search|quant|eval)')