from .base import BaseAWQForCausalLM from transformers.models.llama.modeling_llama import LlamaDecoderLayer, LlamaForCausalLM class LlamaAWQForCausalLM(BaseAWQForCausalLM): layer_type = "LlamaDecoderLayer" max_new_tokens_key = "max_position_embeddings" @staticmethod def fuse_layers(awq_model: BaseAWQForCausalLM): fuser = LlamaFuser(awq_model) fuser.fuse_attention() fuser.fuse_rmsnorm() fuser.fuse_mlp() @staticmethod def get_model_layers(model: LlamaForCausalLM): return model.model.layers @staticmethod def get_act_for_scaling(module: LlamaDecoderLayer): return dict( is_scalable=False ) @staticmethod def move_embed(model: LlamaForCausalLM, device: str): model.model.embed_tokens = model.model.embed_tokens.to(device) @staticmethod def get_layers_for_scaling(module: LlamaDecoderLayer, input_feat, module_kwargs): layers = [] # attention input layers.append(dict( prev_op=module.input_layernorm, layers=[module.self_attn.q_proj, module.self_attn.k_proj, module.self_attn.v_proj], inp=input_feat['self_attn.q_proj'], module2inspect=module.self_attn, kwargs=module_kwargs, )) # attention out # Please refer to https://github.com/mit-han-lab/llm-awq/pull/67#issue-1850622696 if module.self_attn.v_proj.weight.shape == module.self_attn.o_proj.weight.shape: layers.append(dict( prev_op=module.self_attn.v_proj, layers=[module.self_attn.o_proj], inp=input_feat['self_attn.o_proj'], )) # linear 1 layers.append(dict( prev_op=module.post_attention_layernorm, layers=[module.mlp.gate_proj, module.mlp.up_proj], inp=input_feat['mlp.gate_proj'], module2inspect=module.mlp, )) # linear 2 layers.append(dict( prev_op=module.mlp.up_proj, layers=[module.mlp.down_proj], inp=input_feat['mlp.down_proj'], )) return layers import torch from typing import List, Tuple from awq.quantize.qmodule import WQLinear from awq.utils.utils import set_module_name from awq.modules.fused_mlp import QuantLlamaMLP from awq.modules.fused_norm import FTLlamaRMSNorm from awq.modules.fused_attn import QuantLlamaAttention from transformers.models.llama.modeling_llama import LlamaAttention, LlamaRMSNorm, LlamaMLP class LlamaFuser: def __init__(self, awq_model: BaseAWQForCausalLM): self.awq_model = awq_model self.model = awq_model.model self.attention_modules: List[Tuple[str, LlamaAttention]] = [ (name, module) for name, module in self.model.named_modules() if isinstance(module, LlamaAttention) ] self.rmsnorm_modules: List[Tuple[str, LlamaRMSNorm]] = [ (name, module) for name, module in self.model.named_modules() if isinstance(module, LlamaRMSNorm) ] self.mlp_modules: List[Tuple[str, LlamaMLP]] = [ (name, module) for name, module in self.model.named_modules() if isinstance(module, LlamaMLP) ] def fuse_attention(self): for name, module in self.attention_modules: qkv_layer: WQLinear = self._fuse_qkv(module) attn = QuantLlamaAttention( module.hidden_size, module.num_heads, qkv_layer, module.o_proj, qkv_layer.qweight.device, self.awq_model.model.config.max_new_tokens ) set_module_name(self.model, name, attn) def _fuse_qkv(self, module: LlamaAttention): # get qkv and bias q_proj, k_proj, v_proj = module.q_proj, module.k_proj, module.v_proj bias = torch.cat([q_proj.bias, k_proj.bias, v_proj.bias], dim=0) if q_proj.bias is not None else None # create module qkv_layer = WQLinear( q_proj.w_bit, q_proj.group_size, q_proj.in_features, q_proj.out_features + k_proj.out_features + v_proj.out_features, q_proj.bias is not None, q_proj.qweight.device ) # replace buffers with real weights qkv_layer.qweight = torch.cat([q_proj.qweight, k_proj.qweight, v_proj.qweight], dim=1) qkv_layer.qzeros = torch.cat([q_proj.qzeros, k_proj.qzeros, v_proj.qzeros], dim=1) qkv_layer.scales = torch.cat([q_proj.scales, k_proj.scales, v_proj.scales], dim=1) qkv_layer.bias = bias return qkv_layer def fuse_rmsnorm(self): for name, module in self.rmsnorm_modules: norm = FTLlamaRMSNorm(module.weight, module.variance_epsilon) set_module_name(self.model, name, norm) def fuse_mlp(self): for name, module in self.mlp_modules: mlp = QuantLlamaMLP(module.gate_proj, module.down_proj, module.up_proj) set_module_name(self.model, name, mlp)