Unverified Commit cc75d0e8 authored by Junyang Lin's avatar Junyang Lin Committed by GitHub
Browse files

Add qwen2 (#321)

parent 34085edc
......@@ -13,3 +13,4 @@ from .qwen import QwenAWQForCausalLM
from .baichuan import BaichuanAWQForCausalLM
from .llava import LlavaAWQForCausalLM
from .mixtral import MixtralAWQForCausalLM
from .qwen2 import Qwen2AWQForCausalLM
......@@ -21,6 +21,7 @@ AWQ_CAUSAL_LM_MODEL_MAP = {
"qwen": QwenAWQForCausalLM,
"baichuan": BaichuanAWQForCausalLM,
"llava": LlavaAWQForCausalLM,
"qwen2": Qwen2AWQForCausalLM
}
......
......@@ -58,6 +58,7 @@ TRANSFORMERS_AUTO_MAPPING_DICT = {
"qwen": "AutoModelForCausalLM",
"baichuan": "AutoModelForCausalLM",
"llava": "AutoModelForVision2Seq",
"qwen2": "AutoModelForCausalLM",
}
......
import tqdm
from typing import List, Tuple
from .base import BaseAWQForCausalLM
from awq.utils.fused_utils import fuse_qkv
from awq.modules.fused.block import LlamaLikeBlock
from awq.modules.fused.model import LlamaLikeModel
from transformers.models.qwen2.modeling_qwen2 import (
Qwen2DecoderLayer as OldQwen2DecoderLayer,
Qwen2ForCausalLM as OldQwen2ForCausalLM
)
from awq.modules.fused.norm import FasterTransformerRMSNorm
class Qwen2AWQForCausalLM(BaseAWQForCausalLM):
layer_type = "Qwen2DecoderLayer"
max_new_tokens_key = "max_position_embeddings"
@staticmethod
def fuse_layers(model: OldQwen2ForCausalLM):
fuser = Qwen2Fuser(model)
fuser.fuse_transformer()
@staticmethod
def get_model_layers(model: OldQwen2ForCausalLM):
return model.model.layers
@staticmethod
def get_act_for_scaling(module: OldQwen2DecoderLayer):
return dict(
is_scalable=False
)
@staticmethod
def move_embed(model: OldQwen2ForCausalLM, device: str):
model.model.embed_tokens = model.model.embed_tokens.to(device)
@staticmethod
def get_layers_for_scaling(module: OldQwen2DecoderLayer, input_feat, module_kwargs):
layers = []
# attention input
layers.append(dict(
prev_op=module.input_layernorm,
layers=[module.self_attn.q_proj,
module.self_attn.k_proj, module.self_attn.v_proj],
inp=input_feat['self_attn.q_proj'],
module2inspect=module.self_attn, kwargs=module_kwargs,
))
# attention out
# Please refer to https://github.com/mit-han-lab/llm-awq/pull/67#issue-1850622696
if module.self_attn.v_proj.weight.shape == module.self_attn.o_proj.weight.shape:
layers.append(dict(
prev_op=module.self_attn.v_proj,
layers=[module.self_attn.o_proj],
inp=input_feat['self_attn.o_proj'],
))
# linear 1
layers.append(dict(
prev_op=module.post_attention_layernorm,
layers=[module.mlp.gate_proj, module.mlp.up_proj],
inp=input_feat['mlp.gate_proj'],
module2inspect=module.mlp,
))
# linear 2
layers.append(dict(
prev_op=module.mlp.up_proj,
layers=[module.mlp.down_proj],
inp=input_feat['mlp.down_proj'],
))
return layers
class Qwen2Fuser:
def __init__(self, model: OldQwen2ForCausalLM):
self.model = model
self.qwen2_blocks: List[Tuple[str, OldQwen2DecoderLayer]] = [
(name, module) for name, module in self.model.named_modules()
if 'Qwen2DecoderLayer'.lower() in module.__class__.__name__.lower()
]
def fuse_transformer(self):
blocks = []
module: OldQwen2DecoderLayer
for module in tqdm.tqdm(self.model.model.layers, desc="Fusing layers..."):
device = next(iter(module.state_dict().values())).device
qkv = fuse_qkv(
module,
module.self_attn.q_proj,
module.self_attn.k_proj,
module.self_attn.v_proj
)
norm_1 = FasterTransformerRMSNorm(
module.input_layernorm.weight,
module.input_layernorm.variance_epsilon
)
norm_2 = FasterTransformerRMSNorm(
module.post_attention_layernorm.weight,
module.post_attention_layernorm.variance_epsilon
)
blocks.append(LlamaLikeBlock(
hidden_size=self.model.config.hidden_size,
n_heads=self.model.config.num_attention_heads,
n_kv_heads=self.model.config.num_key_value_heads,
qkv_layer=qkv,
o_proj=module.self_attn.o_proj,
mlp=module.mlp,
norm_1=norm_1,
norm_2=norm_2,
dev=device,
max_seq_len=self.model.config.max_new_tokens
))
self.model.model = LlamaLikeModel(
self.model.config.vocab_size,
blocks,
self.model.model.embed_tokens,
self.model.model.norm,
)
setattr(self.model.model, "blocks", self.model.model.blocks)
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment