Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
OpenDAS
AutoAWQ
Commits
cc75d0e8
Unverified
Commit
cc75d0e8
authored
Feb 03, 2024
by
Junyang Lin
Committed by
GitHub
Feb 03, 2024
Browse files
Add qwen2 (#321)
parent
34085edc
Changes
4
Show whitespace changes
Inline
Side-by-side
Showing
4 changed files
with
128 additions
and
0 deletions
+128
-0
awq/models/__init__.py
awq/models/__init__.py
+1
-0
awq/models/auto.py
awq/models/auto.py
+1
-0
awq/models/base.py
awq/models/base.py
+1
-0
awq/models/qwen2.py
awq/models/qwen2.py
+125
-0
No files found.
awq/models/__init__.py
View file @
cc75d0e8
...
...
@@ -13,3 +13,4 @@ from .qwen import QwenAWQForCausalLM
from
.baichuan
import
BaichuanAWQForCausalLM
from
.llava
import
LlavaAWQForCausalLM
from
.mixtral
import
MixtralAWQForCausalLM
from
.qwen2
import
Qwen2AWQForCausalLM
awq/models/auto.py
View file @
cc75d0e8
...
...
@@ -21,6 +21,7 @@ AWQ_CAUSAL_LM_MODEL_MAP = {
"qwen"
:
QwenAWQForCausalLM
,
"baichuan"
:
BaichuanAWQForCausalLM
,
"llava"
:
LlavaAWQForCausalLM
,
"qwen2"
:
Qwen2AWQForCausalLM
}
...
...
awq/models/base.py
View file @
cc75d0e8
...
...
@@ -58,6 +58,7 @@ TRANSFORMERS_AUTO_MAPPING_DICT = {
"qwen"
:
"AutoModelForCausalLM"
,
"baichuan"
:
"AutoModelForCausalLM"
,
"llava"
:
"AutoModelForVision2Seq"
,
"qwen2"
:
"AutoModelForCausalLM"
,
}
...
...
awq/models/qwen2.py
0 → 100644
View file @
cc75d0e8
import
tqdm
from
typing
import
List
,
Tuple
from
.base
import
BaseAWQForCausalLM
from
awq.utils.fused_utils
import
fuse_qkv
from
awq.modules.fused.block
import
LlamaLikeBlock
from
awq.modules.fused.model
import
LlamaLikeModel
from
transformers.models.qwen2.modeling_qwen2
import
(
Qwen2DecoderLayer
as
OldQwen2DecoderLayer
,
Qwen2ForCausalLM
as
OldQwen2ForCausalLM
)
from
awq.modules.fused.norm
import
FasterTransformerRMSNorm
class
Qwen2AWQForCausalLM
(
BaseAWQForCausalLM
):
layer_type
=
"Qwen2DecoderLayer"
max_new_tokens_key
=
"max_position_embeddings"
@
staticmethod
def
fuse_layers
(
model
:
OldQwen2ForCausalLM
):
fuser
=
Qwen2Fuser
(
model
)
fuser
.
fuse_transformer
()
@
staticmethod
def
get_model_layers
(
model
:
OldQwen2ForCausalLM
):
return
model
.
model
.
layers
@
staticmethod
def
get_act_for_scaling
(
module
:
OldQwen2DecoderLayer
):
return
dict
(
is_scalable
=
False
)
@
staticmethod
def
move_embed
(
model
:
OldQwen2ForCausalLM
,
device
:
str
):
model
.
model
.
embed_tokens
=
model
.
model
.
embed_tokens
.
to
(
device
)
@
staticmethod
def
get_layers_for_scaling
(
module
:
OldQwen2DecoderLayer
,
input_feat
,
module_kwargs
):
layers
=
[]
# attention input
layers
.
append
(
dict
(
prev_op
=
module
.
input_layernorm
,
layers
=
[
module
.
self_attn
.
q_proj
,
module
.
self_attn
.
k_proj
,
module
.
self_attn
.
v_proj
],
inp
=
input_feat
[
'self_attn.q_proj'
],
module2inspect
=
module
.
self_attn
,
kwargs
=
module_kwargs
,
))
# attention out
# Please refer to https://github.com/mit-han-lab/llm-awq/pull/67#issue-1850622696
if
module
.
self_attn
.
v_proj
.
weight
.
shape
==
module
.
self_attn
.
o_proj
.
weight
.
shape
:
layers
.
append
(
dict
(
prev_op
=
module
.
self_attn
.
v_proj
,
layers
=
[
module
.
self_attn
.
o_proj
],
inp
=
input_feat
[
'self_attn.o_proj'
],
))
# linear 1
layers
.
append
(
dict
(
prev_op
=
module
.
post_attention_layernorm
,
layers
=
[
module
.
mlp
.
gate_proj
,
module
.
mlp
.
up_proj
],
inp
=
input_feat
[
'mlp.gate_proj'
],
module2inspect
=
module
.
mlp
,
))
# linear 2
layers
.
append
(
dict
(
prev_op
=
module
.
mlp
.
up_proj
,
layers
=
[
module
.
mlp
.
down_proj
],
inp
=
input_feat
[
'mlp.down_proj'
],
))
return
layers
class
Qwen2Fuser
:
def
__init__
(
self
,
model
:
OldQwen2ForCausalLM
):
self
.
model
=
model
self
.
qwen2_blocks
:
List
[
Tuple
[
str
,
OldQwen2DecoderLayer
]]
=
[
(
name
,
module
)
for
name
,
module
in
self
.
model
.
named_modules
()
if
'Qwen2DecoderLayer'
.
lower
()
in
module
.
__class__
.
__name__
.
lower
()
]
def
fuse_transformer
(
self
):
blocks
=
[]
module
:
OldQwen2DecoderLayer
for
module
in
tqdm
.
tqdm
(
self
.
model
.
model
.
layers
,
desc
=
"Fusing layers..."
):
device
=
next
(
iter
(
module
.
state_dict
().
values
())).
device
qkv
=
fuse_qkv
(
module
,
module
.
self_attn
.
q_proj
,
module
.
self_attn
.
k_proj
,
module
.
self_attn
.
v_proj
)
norm_1
=
FasterTransformerRMSNorm
(
module
.
input_layernorm
.
weight
,
module
.
input_layernorm
.
variance_epsilon
)
norm_2
=
FasterTransformerRMSNorm
(
module
.
post_attention_layernorm
.
weight
,
module
.
post_attention_layernorm
.
variance_epsilon
)
blocks
.
append
(
LlamaLikeBlock
(
hidden_size
=
self
.
model
.
config
.
hidden_size
,
n_heads
=
self
.
model
.
config
.
num_attention_heads
,
n_kv_heads
=
self
.
model
.
config
.
num_key_value_heads
,
qkv_layer
=
qkv
,
o_proj
=
module
.
self_attn
.
o_proj
,
mlp
=
module
.
mlp
,
norm_1
=
norm_1
,
norm_2
=
norm_2
,
dev
=
device
,
max_seq_len
=
self
.
model
.
config
.
max_new_tokens
))
self
.
model
.
model
=
LlamaLikeModel
(
self
.
model
.
config
.
vocab_size
,
blocks
,
self
.
model
.
model
.
embed_tokens
,
self
.
model
.
model
.
norm
,
)
setattr
(
self
.
model
.
model
,
"blocks"
,
self
.
model
.
model
.
blocks
)
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment