Commit bd56c301 authored by Casper Hansen's avatar Casper Hansen
Browse files

Mistral support

parent c57da6b8
...@@ -5,3 +5,4 @@ from .falcon import FalconAWQForCausalLM ...@@ -5,3 +5,4 @@ from .falcon import FalconAWQForCausalLM
from .bloom import BloomAWQForCausalLM from .bloom import BloomAWQForCausalLM
from .gptj import GPTJAWQForCausalLM from .gptj import GPTJAWQForCausalLM
from .gpt_bigcode import GptBigCodeAWQForCausalLM from .gpt_bigcode import GptBigCodeAWQForCausalLM
from .mistral import MistralAWQForCausalLM
\ No newline at end of file
...@@ -12,7 +12,8 @@ AWQ_CAUSAL_LM_MODEL_MAP = { ...@@ -12,7 +12,8 @@ AWQ_CAUSAL_LM_MODEL_MAP = {
"falcon": FalconAWQForCausalLM, "falcon": FalconAWQForCausalLM,
"bloom": BloomAWQForCausalLM, "bloom": BloomAWQForCausalLM,
"gptj": GPTJAWQForCausalLM, "gptj": GPTJAWQForCausalLM,
"gpt_bigcode": GptBigCodeAWQForCausalLM "gpt_bigcode": GptBigCodeAWQForCausalLM,
"mistral": MistralAWQForCausalLM
} }
def check_and_get_model_type(model_dir, trust_remote_code=True): def check_and_get_model_type(model_dir, trust_remote_code=True):
......
from .base import BaseAWQForCausalLM
from transformers.models.mistral.modeling_mistral import MistralDecoderLayer, MistralForCausalLM
class MistralAWQForCausalLM(BaseAWQForCausalLM):
layer_type = "MistralDecoderLayer"
max_new_tokens_key = "max_position_embeddings"
@staticmethod
def get_model_layers(model: MistralForCausalLM):
return model.model.layers
@staticmethod
def get_act_for_scaling(module: MistralDecoderLayer):
return dict(
is_scalable=False
)
@staticmethod
def move_embed(model: MistralForCausalLM, device: str):
model.model.embed_tokens = model.model.embed_tokens.to(device)
@staticmethod
def get_layers_for_scaling(module: MistralDecoderLayer, input_feat, module_kwargs):
layers = []
# attention input
layers.append(dict(
prev_op=module.input_layernorm,
layers=[module.self_attn.q_proj,
module.self_attn.k_proj, module.self_attn.v_proj],
inp=input_feat['self_attn.q_proj'],
module2inspect=module.self_attn, kwargs=module_kwargs,
))
# attention out
# Please refer to https://github.com/mit-han-lab/llm-awq/pull/67#issue-1850622696
if module.self_attn.v_proj.weight.shape == module.self_attn.o_proj.weight.shape:
layers.append(dict(
prev_op=module.self_attn.v_proj,
layers=[module.self_attn.o_proj],
inp=input_feat['self_attn.o_proj'],
))
# linear 1
layers.append(dict(
prev_op=module.post_attention_layernorm,
layers=[module.mlp.gate_proj, module.mlp.up_proj],
inp=input_feat['mlp.gate_proj'],
module2inspect=module.mlp,
))
# linear 2
layers.append(dict(
prev_op=module.mlp.up_proj,
layers=[module.mlp.down_proj],
inp=input_feat['mlp.down_proj'],
))
return layers
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment