Commit 984fd2f8 authored by Casper Hansen's avatar Casper Hansen
Browse files

Add GPT BigCode support (StarCoder)

parent a5e8b048
...@@ -4,3 +4,4 @@ from .opt import OptAWQForCausalLM ...@@ -4,3 +4,4 @@ from .opt import OptAWQForCausalLM
from .falcon import FalconAWQForCausalLM from .falcon import FalconAWQForCausalLM
from .bloom import BloomAWQForCausalLM from .bloom import BloomAWQForCausalLM
from .gptj import GPTJAWQForCausalLM from .gptj import GPTJAWQForCausalLM
from .gpt_bigcode import GptBigCodeAWQForCausalLM
\ No newline at end of file
...@@ -11,7 +11,8 @@ AWQ_CAUSAL_LM_MODEL_MAP = { ...@@ -11,7 +11,8 @@ AWQ_CAUSAL_LM_MODEL_MAP = {
"RefinedWebModel": FalconAWQForCausalLM, "RefinedWebModel": FalconAWQForCausalLM,
"falcon": FalconAWQForCausalLM, "falcon": FalconAWQForCausalLM,
"bloom": BloomAWQForCausalLM, "bloom": BloomAWQForCausalLM,
"gptj": GPTJAWQForCausalLM "gptj": GPTJAWQForCausalLM,
"gpt_bigcode": GptBigCodeAWQForCausalLM
} }
def check_and_get_model_type(model_dir, trust_remote_code=True): def check_and_get_model_type(model_dir, trust_remote_code=True):
......
from .base import BaseAWQForCausalLM
from transformers.models.gpt_bigcode.modeling_gpt_bigcode import GPTBigCodeForCausalLM, GPTBigCodeBlock
class GptBigCodeAWQForCausalLM(BaseAWQForCausalLM):
layer_type = "GPTBigCodeBlock"
max_new_tokens_key = "n_positions"
@staticmethod
def get_model_layers(model: GPTBigCodeForCausalLM):
return model.transformer.h
@staticmethod
def get_act_for_scaling(module: GPTBigCodeBlock):
return dict(
is_scalable=True,
scale_name="mlp.act",
scale_layer=module.mlp.act,
scale_shape=module.mlp.c_fc.out_features
)
@staticmethod
def move_embed(model: GPTBigCodeForCausalLM, device):
model.transformer.wte = model.transformer.wte.to(device)
model.transformer.drop = model.transformer.drop.to(device)
@staticmethod
def get_layers_for_scaling(module:GPTBigCodeBlock, input_feat, module_kwargs):
layers = []
# attention input
layers.append(dict(
prev_op=module.ln_1,
layers=[module.attn.c_attn],
inp=input_feat['attn.c_attn'],
module2inspect=module.attn,
kwargs=module_kwargs
))
# attention output
# layers.append(dict(
# prev_op=module.attn.c_attn,
# layers=[module.attn.c_proj],
# inp=input_feat['attn.c_proj']
# ))
# linear 1
layers.append(dict(
prev_op=module.ln_2,
layers=[module.mlp.c_fc],
inp=input_feat['mlp.c_fc'],
module2inspect=module.mlp
))
# linear 2
layers.append(dict(
prev_op=module.mlp.act,
layers=[module.mlp.c_proj],
inp=input_feat['mlp.c_proj']
))
return layers
...@@ -6,12 +6,14 @@ import logging ...@@ -6,12 +6,14 @@ import logging
from transformers.models.bloom.modeling_bloom import BloomBlock, BloomGelu from transformers.models.bloom.modeling_bloom import BloomBlock, BloomGelu
from transformers.models.opt.modeling_opt import OPTDecoderLayer from transformers.models.opt.modeling_opt import OPTDecoderLayer
from transformers.models.llama.modeling_llama import LlamaDecoderLayer, LlamaRMSNorm from transformers.models.llama.modeling_llama import LlamaDecoderLayer, LlamaRMSNorm
from transformers.activations import NewGELUActivation from transformers.activations import NewGELUActivation, PytorchGELUTanh
from awq.modules.act import ScaledActivation from awq.modules.act import ScaledActivation
from awq.utils.module import get_op_by_name, get_op_name, set_op_by_name from awq.utils.module import get_op_by_name, get_op_name, set_op_by_name
__all__ = ["auto_scale_block", "apply_scale"] __all__ = ["auto_scale_block", "apply_scale"]
norms = [nn.LayerNorm, LlamaRMSNorm]
act_functions = [nn.GELU, BloomGelu, NewGELUActivation, PytorchGELUTanh]
@torch.no_grad() @torch.no_grad()
def get_weight_scale(weight, q_group_size=-1): def get_weight_scale(weight, q_group_size=-1):
...@@ -80,7 +82,7 @@ def scale_fc_fc(fc1, fc2, scales): ...@@ -80,7 +82,7 @@ def scale_fc_fc(fc1, fc2, scales):
@torch.no_grad() @torch.no_grad()
def scale_gelu_fc(gelu, fc, scales): def scale_gelu_fc(gelu, fc, scales):
assert any(isinstance(gelu,t) for t in [nn.GELU, BloomGelu, NewGELUActivation]) assert any(isinstance(gelu,t) for t in act_functions)
assert isinstance(fc, nn.Linear) assert isinstance(fc, nn.Linear)
fc.weight.mul_(scales.view(1, -1).to(fc.weight.device)) fc.weight.mul_(scales.view(1, -1).to(fc.weight.device))
...@@ -194,11 +196,11 @@ def apply_scale(module, scales_list, input_feat_dict=None): ...@@ -194,11 +196,11 @@ def apply_scale(module, scales_list, input_feat_dict=None):
assert len(layers) == 1 assert len(layers) == 1
scale_fc_fc(prev_op, layers[0], scales) scale_fc_fc(prev_op, layers[0], scales)
elif any(isinstance(prev_op,t) for t in [nn.LayerNorm, LlamaRMSNorm]) \ elif any(isinstance(prev_op,t) for t in norms) \
or 'rmsnorm' in str(prev_op.__class__).lower(): or 'rmsnorm' in str(prev_op.__class__).lower():
scale_ln_fcs(prev_op, layers, scales) scale_ln_fcs(prev_op, layers, scales)
elif any(isinstance(prev_op,t) for t in [nn.GELU, BloomGelu, NewGELUActivation]): elif any(isinstance(prev_op,t) for t in act_functions):
new_module = ScaledActivation(prev_op, scales) new_module = ScaledActivation(prev_op, scales)
set_op_by_name(module, prev_op_name, new_module) set_op_by_name(module, prev_op_name, new_module)
scale_gelu_fc(prev_op, layers[0], scales) scale_gelu_fc(prev_op, layers[0], scales)
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment