import torch import torch.distributed as dist from torch.nn import Parameter from torch.nn import Module from apex.parallel import DistributedDataParallel as DDP import argparse parser = argparse.ArgumentParser(description='allreduce hook example') parser.add_argument('--dist-url', default='tcp://224.66.41.62:23456', type=str, help='url used to set up distributed training') parser.add_argument('--dist-backend', default='nccl', type=str, help='distributed backend') parser.add_argument('--world-size', default=1, type=int, help='Number of GPUs to use. Can either be manually set ' + 'or automatically set by using \'python -m multiproc\'.') parser.add_argument('--rank', default=0, type=int, help='Used for multi-process training. Can either be manually set ' + 'or automatically set by using \'python -m multiproc\'.') args = parser.parse_args() args.distributed = args.world_size > 1 if args.distributed: torch.cuda.set_device(args.rank % torch.cuda.device_count()) dist.init_process_group(args.dist_backend, init_method=args.dist_url, world_size=args.world_size, rank=args.rank) torch.set_printoptions(precision=10) class Model(Module): def __init__(self): super(Model, self).__init__() self.a = Parameter(torch.cuda.FloatTensor(4096*4096).fill_(1.0)) self.b = Parameter(torch.cuda.FloatTensor(4096*4096).fill_(2.0)) def forward(self, input): return (input*self.a)*self.b model = DDP(Model(), message_size=1) x = torch.cuda.FloatTensor(4096*4096) for i in range(10): x.fill_(i + args.rank) # fill x with new values every iteration for sanity model.zero_grad() out = model(x) loss = out.sum() torch.cuda.nvtx.range_push("backward") loss.backward() torch.cuda.nvtx.range_pop() torch.cuda.nvtx.range_push("synchronize() + info") torch.cuda.synchronize() print("i = {}".format(i)) def info(name, param, val): print(name+": grad.data_ptr() = {}, expected sum {}, got {}".format( param.grad.data_ptr(), val*4096*4096*(2.*i+1)/2., param.grad.data.sum().item())) info("model.a", model.module.a, 2.) info("model.b", model.module.b, 1.) torch.cuda.nvtx.range_pop()