Unverified Commit 9f899769 authored by Hubert Lu's avatar Hubert Lu Committed by GitHub
Browse files

Merge pull request #56 from ROCmSoftwarePlatform/dev/hubertlu/multihead_attn

Enable multihead atten
parents 325246e4 62f06964
#include <vector> #include <vector>
#include <iostream> #include <iostream>
//#include <ATen/ATen.h>
#include <cuda.h> #include <cuda.h>
#include <cuda_runtime.h> #include <cuda_runtime.h>
#include <cuda_fp16.h> #include <cuda_fp16.h>
#include <cuda_profiler_api.h>
#include <ATen/cuda/CUDAContext.h> #include <ATen/cuda/CUDAContext.h>
#include "THC/THC.h" #include "THC/THC.h"
#include <ATen/cuda/CUDAContext.h> #include <ATen/cuda/CUDAContext.h>
#include "cutlass/cutlass.h"
#include "cutlass/gemm/gemm.h"
#include "cutlass/gemm/wmma_gemm_traits.h"
// symbol to be automatically resolved by PyTorch libs // symbol to be automatically resolved by PyTorch libs
extern THCState *state; extern THCState *state;
rocblas_datatype a_type = rocblas_datatype_f16_r;
rocblas_datatype b_type = rocblas_datatype_f16_r;
rocblas_datatype c_type = rocblas_datatype_f16_r;
rocblas_datatype d_type = rocblas_datatype_f16_r;
rocblas_datatype compute_type = rocblas_datatype_f32_r;
rocblas_gemm_algo algo = rocblas_gemm_algo_standard;
int32_t solution_index = 0;
rocblas_int flags = 0;
cublasOperation_t convertTransToCublasOperation(char trans) { cublasOperation_t convertTransToCublasOperation(char trans) {
if (trans == 't') return CUBLAS_OP_T; if (trans == 't') return CUBLAS_OP_T;
else if (trans == 'n') return CUBLAS_OP_N; else if (trans == 'n') return CUBLAS_OP_N;
...@@ -28,9 +33,9 @@ cublasOperation_t convertTransToCublasOperation(char trans) { ...@@ -28,9 +33,9 @@ cublasOperation_t convertTransToCublasOperation(char trans) {
} }
} }
void CublasStridedBatchedGemm(THCState *state, char transa, char transb, long m, long n, long k, void RocblasStridedBatchedGemm(THCState *state, char transa, char transb, long m, long n, long k,
float alpha, const half *a, long lda, long strideA, const half *b, long ldb, long strideB, float alpha, const half *a, long lda, long strideA, const half *b, long ldb, long strideB,
float beta, half *c, long ldc, long strideC, long batchCount, cublasGemmAlgo_t algo=CUBLAS_GEMM_DEFAULT_TENSOR_OP) { float beta, half *c, long ldc, long strideC, half *d, long ldd, long strideD, long batchCount, rocblas_gemm_algo algo) {
cublasOperation_t opa = convertTransToCublasOperation(transa); cublasOperation_t opa = convertTransToCublasOperation(transa);
cublasOperation_t opb = convertTransToCublasOperation(transb); cublasOperation_t opb = convertTransToCublasOperation(transb);
...@@ -39,237 +44,28 @@ void CublasStridedBatchedGemm(THCState *state, char transa, char transb, long m, ...@@ -39,237 +44,28 @@ void CublasStridedBatchedGemm(THCState *state, char transa, char transb, long m,
cublasSetStream(handle, stream); cublasSetStream(handle, stream);
float fAlpha = alpha; float fAlpha = alpha;
float fBeta = beta; float fBeta = beta;
//THCublasCheck(cublasSetMathMode(handle, CUBLAS_TENSOR_OP_MATH)); THCublasCheck(rocblas_gemm_strided_batched_ex(handle,
THCublasCheck(cublasGemmStridedBatchedEx(handle,
opa, opb, (int)m, (int)n, (int)k, opa, opb, (int)m, (int)n, (int)k,
(void*)&fAlpha, a, CUDA_R_16F, (int)lda, strideA, (void*)&fAlpha, a, a_type, (int)lda, strideA,
b, CUDA_R_16F, (int)ldb, strideB, b, b_type, (int)ldb, strideB,
(void*)&fBeta, c, CUDA_R_16F, (int)ldc, strideC, (void*)&fBeta, c, c_type, (int)ldc, strideC,
(int)batchCount, CUDA_R_32F, algo)); d, d_type, int(ldd), strideD,
//THCublasCheck(cublasSetMathMode(handle, CUBLAS_DEFAULT_MATH)); (int)batchCount, compute_type, algo, solution_index, flags));
}
template<cutlass::MatrixLayout::Kind A_LAYOUT, cutlass::MatrixLayout::Kind B_LAYOUT, int SRC_A, int SRC_B, int DST_C>
void CutlassGemm_FP32Accum(cudaStream_t stream, long m, long n, long k,
float alpha, const half *a, long lda, long strideA, const half *b, long ldb, long strideB,
float beta, half *c, long ldc, long strideC, long batchCount) {
//printf("CUTLASS-> %c%c M: %ld N: %ld K: %ld %d%d%d LDA: %ld LDB: %ld LDC: %ld strideA: %ld strideB: %ld strideC: %ld Alpha: %f Beta: %f\n", ((int)A_LAYOUT == 0 ? 'T' : 'N'), ((int)B_LAYOUT ==0 ? 'T' : 'N'), m, n, k, SRC_A,SRC_B,DST_C, lda, ldb, ldc, strideA, strideB, strideC, alpha, beta);
typedef cutlass::gemm::WmmaGemmTraits<
A_LAYOUT,
B_LAYOUT,
cutlass::Shape<32, 16, 16>,
half,
half,
half,
cutlass::gemm::LinearScaling<float>,
float,
typename cutlass::gemm::WmmaGemmAccumulatorsPerWarp<typename cutlass::Shape<32, 16, 16> >::Shape,
typename cutlass::Shape<16, 16, 16>,
SRC_A, //kScalarsPerLdgA_
SRC_B, //kScalarsPerLdgB_
SRC_A, //KScalarsPerLdsA_
SRC_B, //KScalarsPerLdsB_
DST_C, //kScalarsPerLdgCAndStgD_
DST_C/2, //kScalarsPerStsD_
DST_C/2 //kScalarsPerLdsD_
>
WmmaGemmTraits;
typedef cutlass::gemm::Gemm<WmmaGemmTraits> Gemm;
typename Gemm::Params params;
int result = params.initialize(
m, // M dimension for each batch
n, // N dimension for each batch
k, // K dimension for each batch
alpha, // scalar alpha
a,
lda,
strideA, // distance in memory between the first element of neighboring batch
b,
ldb,
strideB, // distance in memory between the first element of neighboring batch
beta, // scalar beta
c, // source matrix C
ldc,
strideC, // distance in memory between the first element of neighboring batch
c, // destination matrix C (may be different memory than source C matrix)
ldc,
strideC, // distance in memory between the first element of neighboring batch
batchCount
);
AT_ASSERTM(result == 0, "Failed to initialize CUTLASS Gemm::Params object.");
// batchCount in cutlass batched GEMM kernels maps to gridDim.z, which is limited to 16 bits.
// To implement batched GEMM with larger batch size, we fragment it into
// smaller batched GEMMs of gridDim.z <= 64k
long batchesLeft = batchCount;
long iterBatchCount = std::min(batchesLeft, static_cast<long>((1 << 16) - 1));
do {
//printf("CUTLASS-> %c%c M: %ld N: %ld K: %ld %d%d%d LDA: %ld LDB: %ld LDC: %ld strideA: %ld strideB: %ld strideC: %ld Alpha: %f Beta: %f TotalBatches: %ld iterBatchCount %ld\n", ((int)A_LAYOUT == 0 ? 'T' : 'N'), ((int)B_LAYOUT ==0 ? 'T' : 'N'), m, n, k, SRC_A,SRC_B,DST_C, lda, ldb, ldc, strideA, strideB, strideC, alpha, beta, batchesLeft, iterBatchCount);
int result = params.initialize(
m, // M dimension for each batch
n, // N dimension for each batch
k, // K dimension for each batch
alpha, // scalar alpha
a,
lda,
strideA, // distance in memory between the first element of neighboring batch
b,
ldb,
strideB, // distance in memory between the first element of neighboring batch
beta, // scalar beta
c, // source matrix C
ldc,
strideC, // distance in memory between the first element of neighboring batch
c, // destination matrix C (may be different memory than source C matrix)
ldc,
strideC, // distance in memory between the first element of neighboring batch
iterBatchCount
);
AT_ASSERTM(result == 0, "Failed to initialize CUTLASS Gemm::Params object.");
// Launch the CUTLASS GEMM kernel.
THCudaCheck(Gemm::launch(params, stream));
// Update batched GEMM params based on completed work
batchesLeft = batchesLeft - iterBatchCount;
a += iterBatchCount * strideA;
b += iterBatchCount * strideB;
c += iterBatchCount * strideC;;
iterBatchCount = std::min(batchesLeft, static_cast<long>((1 << 16) - 1));
} while(batchesLeft > 0);
} }
void gemm_switch_fp32accum(THCState *state, char transa, char transb, long m, long n, long k, void gemm_switch_fp32accum(THCState *state, char transa, char transb, long m, long n, long k,
float alpha, const half *a, long lda, long strideA, const half *b, long ldb, long strideB, float alpha, const half *a, long lda, long strideA, const half *b, long ldb, long strideB,
float beta, half *c, long ldc, long strideC, long batchCount) { float beta, half *c, long ldc, long strideC, half *d, long ldd, long strideD, long batchCount) {
auto stream = c10::cuda::getCurrentCUDAStream(); auto stream = c10::cuda::getCurrentCUDAStream();
//printf("GEMM -> %c%c M: %i N: %i K: %i Alpha: %f Beta: %f\n", (transa == 't' ? 'T' : 'N'), (transb =='t' ? 'T' : 'N'), m, n, k, alpha, beta);
if ( (transa == 't') && (transb == 'n') ) { if ( (transa == 't') && (transb == 'n') ) {
if (!(lda & 0x7) && !(ldb & 0x7) && !(ldc & 0x7)) { CublasStridedBatchedGemm(state, transa, transb, m, n, k, alpha, a, lda, strideA, b, ldb, strideB, beta, c, ldc, strideC, batchCount, CUBLAS_GEMM_ALGO0_TENSOR_OP); } if (!(lda & 0x7) && !(ldb & 0x7) && !(ldc & 0x7)) { RocblasStridedBatchedGemm(state, transa, transb, m, n, k, alpha, a, lda, strideA, b, ldb, strideB, beta, c, ldc, strideC, d, ldd, strideD, batchCount, algo); }
/*if (!(lda & 0x7) && !(ldb & 0x7) && !(ldc & 0x7)) { else { RocblasStridedBatchedGemm(state, transa, transb, m, n, k, alpha, a, lda, strideA, b, ldb, strideB, beta, c, ldc, strideC, d, ldd, strideD, batchCount, algo); }
int m_rem = m % 64;
int n_rem = n % 64;
if ( (m_rem > 48) && ( m <= 192) && (n_rem > 48) && (n <= 192 ) ) {
CublasStridedBatchedGemm(state, transa, transb, m, n, k, alpha, a, lda, strideA, b, ldb, strideB, beta, c, ldc, strideC, batchCount, CUBLAS_GEMM_ALGO0_TENSOR_OP);
} else if ( (m_rem > 32) && ( m > 192) && (n_rem > 32) && (n > 192) ) {
CublasStridedBatchedGemm(state, transa, transb, m, n, k, alpha, a, lda, strideA, b, ldb, strideB, beta, c, ldc, strideC, batchCount, CUBLAS_GEMM_ALGO0_TENSOR_OP);
} else {
CutlassGemm_FP32Accum<cutlass::MatrixLayout::kRowMajor,cutlass::MatrixLayout::kColumnMajor,8,8,8>(stream, m, n, k, alpha, a, lda, strideA, b, ldb, strideB, beta, c, ldc, strideC, batchCount);
}
}*/
else if (!(lda & 0x7) && !(ldb & 0x7) && !(ldc & 0x3)) { CutlassGemm_FP32Accum<cutlass::MatrixLayout::kRowMajor,cutlass::MatrixLayout::kColumnMajor,8,8,4>(stream, m, n, k, alpha, a, lda, strideA, b, ldb, strideB, beta, c, ldc, strideC, batchCount); }
else if (!(lda & 0x7) && !(ldb & 0x7) && !(ldc & 0x1)) { CutlassGemm_FP32Accum<cutlass::MatrixLayout::kRowMajor,cutlass::MatrixLayout::kColumnMajor,8,8,2>(stream, m, n, k, alpha, a, lda, strideA, b, ldb, strideB, beta, c, ldc, strideC, batchCount); }
else if (!(lda & 0x7) && !(ldb & 0x3) && !(ldc & 0x7)) { CutlassGemm_FP32Accum<cutlass::MatrixLayout::kRowMajor,cutlass::MatrixLayout::kColumnMajor,8,4,8>(stream, m, n, k, alpha, a, lda, strideA, b, ldb, strideB, beta, c, ldc, strideC, batchCount); }
else if (!(lda & 0x7) && !(ldb & 0x3) && !(ldc & 0x3)) { CutlassGemm_FP32Accum<cutlass::MatrixLayout::kRowMajor,cutlass::MatrixLayout::kColumnMajor,8,4,4>(stream, m, n, k, alpha, a, lda, strideA, b, ldb, strideB, beta, c, ldc, strideC, batchCount); }
else if (!(lda & 0x7) && !(ldb & 0x3) && !(ldc & 0x1)) { CutlassGemm_FP32Accum<cutlass::MatrixLayout::kRowMajor,cutlass::MatrixLayout::kColumnMajor,8,4,2>(stream, m, n, k, alpha, a, lda, strideA, b, ldb, strideB, beta, c, ldc, strideC, batchCount); }
else if (!(lda & 0x7) && !(ldb & 0x1) && !(ldc & 0x7)) { CutlassGemm_FP32Accum<cutlass::MatrixLayout::kRowMajor,cutlass::MatrixLayout::kColumnMajor,8,2,8>(stream, m, n, k, alpha, a, lda, strideA, b, ldb, strideB, beta, c, ldc, strideC, batchCount); }
else if (!(lda & 0x7) && !(ldb & 0x1) && !(ldc & 0x3)) { CutlassGemm_FP32Accum<cutlass::MatrixLayout::kRowMajor,cutlass::MatrixLayout::kColumnMajor,8,2,4>(stream, m, n, k, alpha, a, lda, strideA, b, ldb, strideB, beta, c, ldc, strideC, batchCount); }
else if (!(lda & 0x7) && !(ldb & 0x1) && !(ldc & 0x1)) { CutlassGemm_FP32Accum<cutlass::MatrixLayout::kRowMajor,cutlass::MatrixLayout::kColumnMajor,8,2,2>(stream, m, n, k, alpha, a, lda, strideA, b, ldb, strideB, beta, c, ldc, strideC, batchCount); }
else if (!(lda & 0x3) && !(ldb & 0x7) && !(ldc & 0x7)) { CutlassGemm_FP32Accum<cutlass::MatrixLayout::kRowMajor,cutlass::MatrixLayout::kColumnMajor,4,8,8>(stream, m, n, k, alpha, a, lda, strideA, b, ldb, strideB, beta, c, ldc, strideC, batchCount); }
else if (!(lda & 0x3) && !(ldb & 0x7) && !(ldc & 0x3)) { CutlassGemm_FP32Accum<cutlass::MatrixLayout::kRowMajor,cutlass::MatrixLayout::kColumnMajor,4,8,4>(stream, m, n, k, alpha, a, lda, strideA, b, ldb, strideB, beta, c, ldc, strideC, batchCount); }
else if (!(lda & 0x3) && !(ldb & 0x7) && !(ldc & 0x1)) { CutlassGemm_FP32Accum<cutlass::MatrixLayout::kRowMajor,cutlass::MatrixLayout::kColumnMajor,4,8,2>(stream, m, n, k, alpha, a, lda, strideA, b, ldb, strideB, beta, c, ldc, strideC, batchCount); }
else if (!(lda & 0x3) && !(ldb & 0x3) && !(ldc & 0x7)) { CutlassGemm_FP32Accum<cutlass::MatrixLayout::kRowMajor,cutlass::MatrixLayout::kColumnMajor,4,4,8>(stream, m, n, k, alpha, a, lda, strideA, b, ldb, strideB, beta, c, ldc, strideC, batchCount); }
else if (!(lda & 0x3) && !(ldb & 0x3) && !(ldc & 0x3)) { CutlassGemm_FP32Accum<cutlass::MatrixLayout::kRowMajor,cutlass::MatrixLayout::kColumnMajor,4,4,4>(stream, m, n, k, alpha, a, lda, strideA, b, ldb, strideB, beta, c, ldc, strideC, batchCount); }
else if (!(lda & 0x3) && !(ldb & 0x3) && !(ldc & 0x1)) { CutlassGemm_FP32Accum<cutlass::MatrixLayout::kRowMajor,cutlass::MatrixLayout::kColumnMajor,4,4,2>(stream, m, n, k, alpha, a, lda, strideA, b, ldb, strideB, beta, c, ldc, strideC, batchCount); }
else if (!(lda & 0x3) && !(ldb & 0x1) && !(ldc & 0x7)) { CutlassGemm_FP32Accum<cutlass::MatrixLayout::kRowMajor,cutlass::MatrixLayout::kColumnMajor,4,2,8>(stream, m, n, k, alpha, a, lda, strideA, b, ldb, strideB, beta, c, ldc, strideC, batchCount); }
else if (!(lda & 0x3) && !(ldb & 0x1) && !(ldc & 0x3)) { CutlassGemm_FP32Accum<cutlass::MatrixLayout::kRowMajor,cutlass::MatrixLayout::kColumnMajor,4,2,4>(stream, m, n, k, alpha, a, lda, strideA, b, ldb, strideB, beta, c, ldc, strideC, batchCount); }
else if (!(lda & 0x3) && !(ldb & 0x1) && !(ldc & 0x1)) { CutlassGemm_FP32Accum<cutlass::MatrixLayout::kRowMajor,cutlass::MatrixLayout::kColumnMajor,4,2,2>(stream, m, n, k, alpha, a, lda, strideA, b, ldb, strideB, beta, c, ldc, strideC, batchCount); }
else if (!(lda & 0x1) && !(ldb & 0x7) && !(ldc & 0x7)) { CutlassGemm_FP32Accum<cutlass::MatrixLayout::kRowMajor,cutlass::MatrixLayout::kColumnMajor,2,8,8>(stream, m, n, k, alpha, a, lda, strideA, b, ldb, strideB, beta, c, ldc, strideC, batchCount); }
else if (!(lda & 0x1) && !(ldb & 0x7) && !(ldc & 0x3)) { CutlassGemm_FP32Accum<cutlass::MatrixLayout::kRowMajor,cutlass::MatrixLayout::kColumnMajor,2,8,4>(stream, m, n, k, alpha, a, lda, strideA, b, ldb, strideB, beta, c, ldc, strideC, batchCount); }
else if (!(lda & 0x1) && !(ldb & 0x7) && !(ldc & 0x1)) { CutlassGemm_FP32Accum<cutlass::MatrixLayout::kRowMajor,cutlass::MatrixLayout::kColumnMajor,2,8,2>(stream, m, n, k, alpha, a, lda, strideA, b, ldb, strideB, beta, c, ldc, strideC, batchCount); }
else if (!(lda & 0x1) && !(ldb & 0x3) && !(ldc & 0x7)) { CutlassGemm_FP32Accum<cutlass::MatrixLayout::kRowMajor,cutlass::MatrixLayout::kColumnMajor,2,4,8>(stream, m, n, k, alpha, a, lda, strideA, b, ldb, strideB, beta, c, ldc, strideC, batchCount); }
else if (!(lda & 0x1) && !(ldb & 0x3) && !(ldc & 0x3)) { CutlassGemm_FP32Accum<cutlass::MatrixLayout::kRowMajor,cutlass::MatrixLayout::kColumnMajor,2,4,4>(stream, m, n, k, alpha, a, lda, strideA, b, ldb, strideB, beta, c, ldc, strideC, batchCount); }
else if (!(lda & 0x1) && !(ldb & 0x3) && !(ldc & 0x1)) { CutlassGemm_FP32Accum<cutlass::MatrixLayout::kRowMajor,cutlass::MatrixLayout::kColumnMajor,2,4,2>(stream, m, n, k, alpha, a, lda, strideA, b, ldb, strideB, beta, c, ldc, strideC, batchCount); }
else if (!(lda & 0x1) && !(ldb & 0x1) && !(ldc & 0x7)) { CutlassGemm_FP32Accum<cutlass::MatrixLayout::kRowMajor,cutlass::MatrixLayout::kColumnMajor,2,2,8>(stream, m, n, k, alpha, a, lda, strideA, b, ldb, strideB, beta, c, ldc, strideC, batchCount); }
else if (!(lda & 0x1) && !(ldb & 0x1) && !(ldc & 0x3)) { CutlassGemm_FP32Accum<cutlass::MatrixLayout::kRowMajor,cutlass::MatrixLayout::kColumnMajor,2,2,4>(stream, m, n, k, alpha, a, lda, strideA, b, ldb, strideB, beta, c, ldc, strideC, batchCount); }
else if (!(lda & 0x1) && !(ldb & 0x1) && !(ldc & 0x1)) { CutlassGemm_FP32Accum<cutlass::MatrixLayout::kRowMajor,cutlass::MatrixLayout::kColumnMajor,2,2,2>(stream, m, n, k, alpha, a, lda, strideA, b, ldb, strideB, beta, c, ldc, strideC, batchCount); }
else { CublasStridedBatchedGemm(state, transa, transb, m, n, k, alpha, a, lda, strideA, b, ldb, strideB, beta, c, ldc, strideC, batchCount); }
} else if ( (transa == 'n') && (transb == 'n') ) { } else if ( (transa == 'n') && (transb == 'n') ) {
if (!(lda & 0x7) && !(ldb & 0x7) && !(ldc & 0x7)) { CublasStridedBatchedGemm(state, transa, transb, m, n, k, alpha, a, lda, strideA, b, ldb, strideB, beta, c, ldc, strideC, batchCount, CUBLAS_GEMM_ALGO0_TENSOR_OP); } if (!(lda & 0x7) && !(ldb & 0x7) && !(ldc & 0x7)) { RocblasStridedBatchedGemm(state, transa, transb, m, n, k, alpha, a, lda, strideA, b, ldb, strideB, beta, c, ldc, strideC, d, ldd, strideD, batchCount, algo); }
/*if (!(lda & 0x7) && !(ldb & 0x7) && !(ldc & 0x7)) { else { RocblasStridedBatchedGemm(state, transa, transb, m, n, k, alpha, a, lda, strideA, b, ldb, strideB, beta, c, ldc, strideC, d, ldd, strideD, batchCount, algo); }
int m_rem = m % 64;
int n_rem = n % 64;
if ( (m_rem > 48) && ( m <= 192) && (n_rem > 48) && (n <= 192 ) ) {
CublasStridedBatchedGemm(state, transa, transb, m, n, k, alpha, a, lda, strideA, b, ldb, strideB, beta, c, ldc, strideC, batchCount, CUBLAS_GEMM_ALGO0_TENSOR_OP);
} else if ( (m_rem > 32) && ( m > 192) && (n_rem > 32) && (n > 192) ) {
CublasStridedBatchedGemm(state, transa, transb, m, n, k, alpha, a, lda, strideA, b, ldb, strideB, beta, c, ldc, strideC, batchCount, CUBLAS_GEMM_ALGO0_TENSOR_OP);
} else {
CutlassGemm_FP32Accum<cutlass::MatrixLayout::kColumnMajor,cutlass::MatrixLayout::kColumnMajor,8,8,8>(stream, m, n, k, alpha, a, lda, strideA, b, ldb, strideB, beta, c, ldc, strideC, batchCount);
}
}*/
else if (!(lda & 0x7) && !(ldb & 0x7) && !(ldc & 0x3)) { CutlassGemm_FP32Accum<cutlass::MatrixLayout::kColumnMajor,cutlass::MatrixLayout::kColumnMajor,8,8,4>(stream, m, n, k, alpha, a, lda, strideA, b, ldb, strideB, beta, c, ldc, strideC, batchCount); }
else if (!(lda & 0x7) && !(ldb & 0x7) && !(ldc & 0x1)) { CutlassGemm_FP32Accum<cutlass::MatrixLayout::kColumnMajor,cutlass::MatrixLayout::kColumnMajor,8,8,2>(stream, m, n, k, alpha, a, lda, strideA, b, ldb, strideB, beta, c, ldc, strideC, batchCount); }
else if (!(lda & 0x7) && !(ldb & 0x3) && !(ldc & 0x7)) { CutlassGemm_FP32Accum<cutlass::MatrixLayout::kColumnMajor,cutlass::MatrixLayout::kColumnMajor,8,4,8>(stream, m, n, k, alpha, a, lda, strideA, b, ldb, strideB, beta, c, ldc, strideC, batchCount); }
else if (!(lda & 0x7) && !(ldb & 0x3) && !(ldc & 0x3)) { CutlassGemm_FP32Accum<cutlass::MatrixLayout::kColumnMajor,cutlass::MatrixLayout::kColumnMajor,8,4,4>(stream, m, n, k, alpha, a, lda, strideA, b, ldb, strideB, beta, c, ldc, strideC, batchCount); }
else if (!(lda & 0x7) && !(ldb & 0x3) && !(ldc & 0x1)) { CutlassGemm_FP32Accum<cutlass::MatrixLayout::kColumnMajor,cutlass::MatrixLayout::kColumnMajor,8,4,2>(stream, m, n, k, alpha, a, lda, strideA, b, ldb, strideB, beta, c, ldc, strideC, batchCount); }
else if (!(lda & 0x7) && !(ldb & 0x1) && !(ldc & 0x7)) { CutlassGemm_FP32Accum<cutlass::MatrixLayout::kColumnMajor,cutlass::MatrixLayout::kColumnMajor,8,2,8>(stream, m, n, k, alpha, a, lda, strideA, b, ldb, strideB, beta, c, ldc, strideC, batchCount); }
else if (!(lda & 0x7) && !(ldb & 0x1) && !(ldc & 0x3)) { CutlassGemm_FP32Accum<cutlass::MatrixLayout::kColumnMajor,cutlass::MatrixLayout::kColumnMajor,8,2,4>(stream, m, n, k, alpha, a, lda, strideA, b, ldb, strideB, beta, c, ldc, strideC, batchCount); }
else if (!(lda & 0x7) && !(ldb & 0x1) && !(ldc & 0x1)) { CutlassGemm_FP32Accum<cutlass::MatrixLayout::kColumnMajor,cutlass::MatrixLayout::kColumnMajor,8,2,2>(stream, m, n, k, alpha, a, lda, strideA, b, ldb, strideB, beta, c, ldc, strideC, batchCount); }
else if (!(lda & 0x3) && !(ldb & 0x7) && !(ldc & 0x7)) { CutlassGemm_FP32Accum<cutlass::MatrixLayout::kColumnMajor,cutlass::MatrixLayout::kColumnMajor,4,8,8>(stream, m, n, k, alpha, a, lda, strideA, b, ldb, strideB, beta, c, ldc, strideC, batchCount); }
else if (!(lda & 0x3) && !(ldb & 0x7) && !(ldc & 0x3)) { CutlassGemm_FP32Accum<cutlass::MatrixLayout::kColumnMajor,cutlass::MatrixLayout::kColumnMajor,4,8,4>(stream, m, n, k, alpha, a, lda, strideA, b, ldb, strideB, beta, c, ldc, strideC, batchCount); }
else if (!(lda & 0x3) && !(ldb & 0x7) && !(ldc & 0x1)) { CutlassGemm_FP32Accum<cutlass::MatrixLayout::kColumnMajor,cutlass::MatrixLayout::kColumnMajor,4,8,2>(stream, m, n, k, alpha, a, lda, strideA, b, ldb, strideB, beta, c, ldc, strideC, batchCount); }
else if (!(lda & 0x3) && !(ldb & 0x3) && !(ldc & 0x7)) { CutlassGemm_FP32Accum<cutlass::MatrixLayout::kColumnMajor,cutlass::MatrixLayout::kColumnMajor,4,4,8>(stream, m, n, k, alpha, a, lda, strideA, b, ldb, strideB, beta, c, ldc, strideC, batchCount); }
else if (!(lda & 0x3) && !(ldb & 0x3) && !(ldc & 0x3)) { CutlassGemm_FP32Accum<cutlass::MatrixLayout::kColumnMajor,cutlass::MatrixLayout::kColumnMajor,4,4,4>(stream, m, n, k, alpha, a, lda, strideA, b, ldb, strideB, beta, c, ldc, strideC, batchCount); }
else if (!(lda & 0x3) && !(ldb & 0x3) && !(ldc & 0x1)) { CutlassGemm_FP32Accum<cutlass::MatrixLayout::kColumnMajor,cutlass::MatrixLayout::kColumnMajor,4,4,2>(stream, m, n, k, alpha, a, lda, strideA, b, ldb, strideB, beta, c, ldc, strideC, batchCount); }
else if (!(lda & 0x3) && !(ldb & 0x1) && !(ldc & 0x7)) { CutlassGemm_FP32Accum<cutlass::MatrixLayout::kColumnMajor,cutlass::MatrixLayout::kColumnMajor,4,2,8>(stream, m, n, k, alpha, a, lda, strideA, b, ldb, strideB, beta, c, ldc, strideC, batchCount); }
else if (!(lda & 0x3) && !(ldb & 0x1) && !(ldc & 0x3)) { CutlassGemm_FP32Accum<cutlass::MatrixLayout::kColumnMajor,cutlass::MatrixLayout::kColumnMajor,4,2,4>(stream, m, n, k, alpha, a, lda, strideA, b, ldb, strideB, beta, c, ldc, strideC, batchCount); }
else if (!(lda & 0x3) && !(ldb & 0x1) && !(ldc & 0x1)) { CutlassGemm_FP32Accum<cutlass::MatrixLayout::kColumnMajor,cutlass::MatrixLayout::kColumnMajor,4,2,2>(stream, m, n, k, alpha, a, lda, strideA, b, ldb, strideB, beta, c, ldc, strideC, batchCount); }
else if (!(lda & 0x1) && !(ldb & 0x7) && !(ldc & 0x7)) { CutlassGemm_FP32Accum<cutlass::MatrixLayout::kColumnMajor,cutlass::MatrixLayout::kColumnMajor,2,8,8>(stream, m, n, k, alpha, a, lda, strideA, b, ldb, strideB, beta, c, ldc, strideC, batchCount); }
else if (!(lda & 0x1) && !(ldb & 0x7) && !(ldc & 0x3)) { CutlassGemm_FP32Accum<cutlass::MatrixLayout::kColumnMajor,cutlass::MatrixLayout::kColumnMajor,2,8,4>(stream, m, n, k, alpha, a, lda, strideA, b, ldb, strideB, beta, c, ldc, strideC, batchCount); }
else if (!(lda & 0x1) && !(ldb & 0x7) && !(ldc & 0x1)) { CutlassGemm_FP32Accum<cutlass::MatrixLayout::kColumnMajor,cutlass::MatrixLayout::kColumnMajor,2,8,2>(stream, m, n, k, alpha, a, lda, strideA, b, ldb, strideB, beta, c, ldc, strideC, batchCount); }
else if (!(lda & 0x1) && !(ldb & 0x3) && !(ldc & 0x7)) { CutlassGemm_FP32Accum<cutlass::MatrixLayout::kColumnMajor,cutlass::MatrixLayout::kColumnMajor,2,4,8>(stream, m, n, k, alpha, a, lda, strideA, b, ldb, strideB, beta, c, ldc, strideC, batchCount); }
else if (!(lda & 0x1) && !(ldb & 0x3) && !(ldc & 0x3)) { CutlassGemm_FP32Accum<cutlass::MatrixLayout::kColumnMajor,cutlass::MatrixLayout::kColumnMajor,2,4,4>(stream, m, n, k, alpha, a, lda, strideA, b, ldb, strideB, beta, c, ldc, strideC, batchCount); }
else if (!(lda & 0x1) && !(ldb & 0x3) && !(ldc & 0x1)) { CutlassGemm_FP32Accum<cutlass::MatrixLayout::kColumnMajor,cutlass::MatrixLayout::kColumnMajor,2,4,2>(stream, m, n, k, alpha, a, lda, strideA, b, ldb, strideB, beta, c, ldc, strideC, batchCount); }
else if (!(lda & 0x1) && !(ldb & 0x1) && !(ldc & 0x7)) { CutlassGemm_FP32Accum<cutlass::MatrixLayout::kColumnMajor,cutlass::MatrixLayout::kColumnMajor,2,2,8>(stream, m, n, k, alpha, a, lda, strideA, b, ldb, strideB, beta, c, ldc, strideC, batchCount); }
else if (!(lda & 0x1) && !(ldb & 0x1) && !(ldc & 0x3)) { CutlassGemm_FP32Accum<cutlass::MatrixLayout::kColumnMajor,cutlass::MatrixLayout::kColumnMajor,2,2,4>(stream, m, n, k, alpha, a, lda, strideA, b, ldb, strideB, beta, c, ldc, strideC, batchCount); }
else if (!(lda & 0x1) && !(ldb & 0x1) && !(ldc & 0x1)) { CutlassGemm_FP32Accum<cutlass::MatrixLayout::kColumnMajor,cutlass::MatrixLayout::kColumnMajor,2,2,2>(stream, m, n, k, alpha, a, lda, strideA, b, ldb, strideB, beta, c, ldc, strideC, batchCount); }
else { CublasStridedBatchedGemm(state, transa, transb, m, n, k, alpha, a, lda, strideA, b, ldb, strideB, beta, c, ldc, strideC, batchCount); }
} else if ( (transa == 'n') && (transb == 't') ) { } else if ( (transa == 'n') && (transb == 't') ) {
if (!(lda & 0x7) && !(ldb & 0x7) && !(ldc & 0x7)) { CublasStridedBatchedGemm(state, transa, transb, m, n, k, alpha, a, lda, strideA, b, ldb, strideB, beta, c, ldc, strideC, batchCount, CUBLAS_GEMM_ALGO0_TENSOR_OP); } if (!(lda & 0x7) && !(ldb & 0x7) && !(ldc & 0x7)) {RocblasStridedBatchedGemm(state, transa, transb, m, n, k, alpha, a, lda, strideA, b, ldb, strideB, beta, c, ldc, strideC, d, ldd, strideD, batchCount, algo); }
/*if (!(lda & 0x7) && !(ldb & 0x7) && !(ldc & 0x7)) { else { RocblasStridedBatchedGemm(state, transa, transb, m, n, k, alpha, a, lda, strideA, b, ldb, strideB, beta, c, ldc, strideC, d, ldd, strideD, batchCount, algo); }
int m_rem = m % 64;
int n_rem = n % 64;
if ( (m_rem > 48) && ( m <= 192) && (n_rem > 48) && (n <= 192 ) ) {
CublasStridedBatchedGemm(state, transa, transb, m, n, k, alpha, a, lda, strideA, b, ldb, strideB, beta, c, ldc, strideC, batchCount, CUBLAS_GEMM_ALGO0_TENSOR_OP);
} else if ( (m_rem > 32) && ( m > 192) && (n_rem > 32) && (n > 192) ) {
CublasStridedBatchedGemm(state, transa, transb, m, n, k, alpha, a, lda, strideA, b, ldb, strideB, beta, c, ldc, strideC, batchCount, CUBLAS_GEMM_ALGO0_TENSOR_OP);
} else {
CutlassGemm_FP32Accum<cutlass::MatrixLayout::kColumnMajor,cutlass::MatrixLayout::kRowMajor,8,8,8>(stream, m, n, k, alpha, a, lda, strideA, b, ldb, strideB, beta, c, ldc, strideC, batchCount);
}
}*/
else if (!(lda & 0x7) && !(ldb & 0x7) && !(ldc & 0x3)) { CutlassGemm_FP32Accum<cutlass::MatrixLayout::kColumnMajor,cutlass::MatrixLayout::kRowMajor,8,8,4>(stream, m, n, k, alpha, a, lda, strideA, b, ldb, strideB, beta, c, ldc, strideC, batchCount); }
else if (!(lda & 0x7) && !(ldb & 0x7) && !(ldc & 0x1)) { CutlassGemm_FP32Accum<cutlass::MatrixLayout::kColumnMajor,cutlass::MatrixLayout::kRowMajor,8,8,2>(stream, m, n, k, alpha, a, lda, strideA, b, ldb, strideB, beta, c, ldc, strideC, batchCount); }
else if (!(lda & 0x7) && !(ldb & 0x3) && !(ldc & 0x7)) { CutlassGemm_FP32Accum<cutlass::MatrixLayout::kColumnMajor,cutlass::MatrixLayout::kRowMajor,8,4,8>(stream, m, n, k, alpha, a, lda, strideA, b, ldb, strideB, beta, c, ldc, strideC, batchCount); }
else if (!(lda & 0x7) && !(ldb & 0x3) && !(ldc & 0x3)) { CutlassGemm_FP32Accum<cutlass::MatrixLayout::kColumnMajor,cutlass::MatrixLayout::kRowMajor,8,4,4>(stream, m, n, k, alpha, a, lda, strideA, b, ldb, strideB, beta, c, ldc, strideC, batchCount); }
else if (!(lda & 0x7) && !(ldb & 0x3) && !(ldc & 0x1)) { CutlassGemm_FP32Accum<cutlass::MatrixLayout::kColumnMajor,cutlass::MatrixLayout::kRowMajor,8,4,2>(stream, m, n, k, alpha, a, lda, strideA, b, ldb, strideB, beta, c, ldc, strideC, batchCount); }
else if (!(lda & 0x7) && !(ldb & 0x1) && !(ldc & 0x7)) { CutlassGemm_FP32Accum<cutlass::MatrixLayout::kColumnMajor,cutlass::MatrixLayout::kRowMajor,8,2,8>(stream, m, n, k, alpha, a, lda, strideA, b, ldb, strideB, beta, c, ldc, strideC, batchCount); }
else if (!(lda & 0x7) && !(ldb & 0x1) && !(ldc & 0x3)) { CutlassGemm_FP32Accum<cutlass::MatrixLayout::kColumnMajor,cutlass::MatrixLayout::kRowMajor,8,2,4>(stream, m, n, k, alpha, a, lda, strideA, b, ldb, strideB, beta, c, ldc, strideC, batchCount); }
else if (!(lda & 0x7) && !(ldb & 0x1) && !(ldc & 0x1)) { CutlassGemm_FP32Accum<cutlass::MatrixLayout::kColumnMajor,cutlass::MatrixLayout::kRowMajor,8,2,2>(stream, m, n, k, alpha, a, lda, strideA, b, ldb, strideB, beta, c, ldc, strideC, batchCount); }
else if (!(lda & 0x3) && !(ldb & 0x7) && !(ldc & 0x7)) { CutlassGemm_FP32Accum<cutlass::MatrixLayout::kColumnMajor,cutlass::MatrixLayout::kRowMajor,4,8,8>(stream, m, n, k, alpha, a, lda, strideA, b, ldb, strideB, beta, c, ldc, strideC, batchCount); }
else if (!(lda & 0x3) && !(ldb & 0x7) && !(ldc & 0x3)) { CutlassGemm_FP32Accum<cutlass::MatrixLayout::kColumnMajor,cutlass::MatrixLayout::kRowMajor,4,8,4>(stream, m, n, k, alpha, a, lda, strideA, b, ldb, strideB, beta, c, ldc, strideC, batchCount); }
else if (!(lda & 0x3) && !(ldb & 0x7) && !(ldc & 0x1)) { CutlassGemm_FP32Accum<cutlass::MatrixLayout::kColumnMajor,cutlass::MatrixLayout::kRowMajor,4,8,2>(stream, m, n, k, alpha, a, lda, strideA, b, ldb, strideB, beta, c, ldc, strideC, batchCount); }
else if (!(lda & 0x3) && !(ldb & 0x3) && !(ldc & 0x7)) { CutlassGemm_FP32Accum<cutlass::MatrixLayout::kColumnMajor,cutlass::MatrixLayout::kRowMajor,4,4,8>(stream, m, n, k, alpha, a, lda, strideA, b, ldb, strideB, beta, c, ldc, strideC, batchCount); }
else if (!(lda & 0x3) && !(ldb & 0x3) && !(ldc & 0x3)) { CutlassGemm_FP32Accum<cutlass::MatrixLayout::kColumnMajor,cutlass::MatrixLayout::kRowMajor,4,4,4>(stream, m, n, k, alpha, a, lda, strideA, b, ldb, strideB, beta, c, ldc, strideC, batchCount); }
else if (!(lda & 0x3) && !(ldb & 0x1) && !(ldc & 0x7)) { CutlassGemm_FP32Accum<cutlass::MatrixLayout::kColumnMajor,cutlass::MatrixLayout::kRowMajor,4,2,8>(stream, m, n, k, alpha, a, lda, strideA, b, ldb, strideB, beta, c, ldc, strideC, batchCount); }
else if (!(lda & 0x3) && !(ldb & 0x1) && !(ldc & 0x3)) { CutlassGemm_FP32Accum<cutlass::MatrixLayout::kColumnMajor,cutlass::MatrixLayout::kRowMajor,4,2,4>(stream, m, n, k, alpha, a, lda, strideA, b, ldb, strideB, beta, c, ldc, strideC, batchCount); }
else if (!(lda & 0x3) && !(ldb & 0x1) && !(ldc & 0x1)) { CutlassGemm_FP32Accum<cutlass::MatrixLayout::kColumnMajor,cutlass::MatrixLayout::kRowMajor,4,2,2>(stream, m, n, k, alpha, a, lda, strideA, b, ldb, strideB, beta, c, ldc, strideC, batchCount); }
else if (!(lda & 0x1) && !(ldb & 0x7) && !(ldc & 0x7)) { CutlassGemm_FP32Accum<cutlass::MatrixLayout::kColumnMajor,cutlass::MatrixLayout::kRowMajor,2,8,8>(stream, m, n, k, alpha, a, lda, strideA, b, ldb, strideB, beta, c, ldc, strideC, batchCount); }
else if (!(lda & 0x1) && !(ldb & 0x7) && !(ldc & 0x3)) { CutlassGemm_FP32Accum<cutlass::MatrixLayout::kColumnMajor,cutlass::MatrixLayout::kRowMajor,2,8,4>(stream, m, n, k, alpha, a, lda, strideA, b, ldb, strideB, beta, c, ldc, strideC, batchCount); }
else if (!(lda & 0x1) && !(ldb & 0x7) && !(ldc & 0x1)) { CutlassGemm_FP32Accum<cutlass::MatrixLayout::kColumnMajor,cutlass::MatrixLayout::kRowMajor,2,8,2>(stream, m, n, k, alpha, a, lda, strideA, b, ldb, strideB, beta, c, ldc, strideC, batchCount); }
else if (!(lda & 0x1) && !(ldb & 0x3) && !(ldc & 0x7)) { CutlassGemm_FP32Accum<cutlass::MatrixLayout::kColumnMajor,cutlass::MatrixLayout::kRowMajor,2,4,8>(stream, m, n, k, alpha, a, lda, strideA, b, ldb, strideB, beta, c, ldc, strideC, batchCount); }
else if (!(lda & 0x1) && !(ldb & 0x3) && !(ldc & 0x3)) { CutlassGemm_FP32Accum<cutlass::MatrixLayout::kColumnMajor,cutlass::MatrixLayout::kRowMajor,2,4,4>(stream, m, n, k, alpha, a, lda, strideA, b, ldb, strideB, beta, c, ldc, strideC, batchCount); }
else if (!(lda & 0x1) && !(ldb & 0x3) && !(ldc & 0x1)) { CutlassGemm_FP32Accum<cutlass::MatrixLayout::kColumnMajor,cutlass::MatrixLayout::kRowMajor,2,4,2>(stream, m, n, k, alpha, a, lda, strideA, b, ldb, strideB, beta, c, ldc, strideC, batchCount); }
else if (!(lda & 0x1) && !(ldb & 0x1) && !(ldc & 0x7)) { CutlassGemm_FP32Accum<cutlass::MatrixLayout::kColumnMajor,cutlass::MatrixLayout::kRowMajor,2,2,8>(stream, m, n, k, alpha, a, lda, strideA, b, ldb, strideB, beta, c, ldc, strideC, batchCount); }
else if (!(lda & 0x1) && !(ldb & 0x1) && !(ldc & 0x3)) { CutlassGemm_FP32Accum<cutlass::MatrixLayout::kColumnMajor,cutlass::MatrixLayout::kRowMajor,2,2,4>(stream, m, n, k, alpha, a, lda, strideA, b, ldb, strideB, beta, c, ldc, strideC, batchCount); }
else if (!(lda & 0x1) && !(ldb & 0x1) && !(ldc & 0x1)) { CutlassGemm_FP32Accum<cutlass::MatrixLayout::kColumnMajor,cutlass::MatrixLayout::kRowMajor,2,2,2>(stream, m, n, k, alpha, a, lda, strideA, b, ldb, strideB, beta, c, ldc, strideC, batchCount); }
else { CublasStridedBatchedGemm(state, transa, transb, m, n, k, alpha, a, lda, strideA, b, ldb, strideB, beta, c, ldc, strideC, batchCount); }
} else { } else {
AT_ASSERTM(false, "TransA and TransB are invalid"); AT_ASSERTM(false, "TransA and TransB are invalid");
} }
...@@ -311,7 +107,7 @@ void adjustLdLevel3(char transa, char transb, int64_t m, int64_t n, int64_t k, i ...@@ -311,7 +107,7 @@ void adjustLdLevel3(char transa, char transb, int64_t m, int64_t n, int64_t k, i
void HgemmStridedBatched(THCState *state, char transa, char transb, long m, long n, long k, void HgemmStridedBatched(THCState *state, char transa, char transb, long m, long n, long k,
float alpha, const half *a, long lda, long strideA, const half *b, long ldb, long strideB, float alpha, const half *a, long lda, long strideA, const half *b, long ldb, long strideB,
float beta, half *c, long ldc, long strideC, long batchCount) float beta, half *c, long ldc, long strideC, half *d, long ldd, long strideD, long batchCount)
{ {
if( (m >= INT_MAX) || (n >= INT_MAX) || (k >= INT_MAX) || (lda >= INT_MAX) || (ldb >= INT_MAX) || (ldc >= INT_MAX) || (batchCount >= INT_MAX) ) if( (m >= INT_MAX) || (n >= INT_MAX) || (k >= INT_MAX) || (lda >= INT_MAX) || (ldb >= INT_MAX) || (ldc >= INT_MAX) || (batchCount >= INT_MAX) )
...@@ -323,7 +119,7 @@ void HgemmStridedBatched(THCState *state, char transa, char transb, long m, long ...@@ -323,7 +119,7 @@ void HgemmStridedBatched(THCState *state, char transa, char transb, long m, long
adjustLdLevel3(transa, transb, m, n, k, &lda, &ldb, &ldc); adjustLdLevel3(transa, transb, m, n, k, &lda, &ldb, &ldc);
//gemm_switch(state, transa, transb, m, n, k, alpha, a, lda, strideA, b, ldb, strideB, beta, c, ldc, strideC, batchCount); //gemm_switch(state, transa, transb, m, n, k, alpha, a, lda, strideA, b, ldb, strideB, beta, c, ldc, strideC, batchCount);
gemm_switch_fp32accum(state, transa, transb, m, n, k, alpha, a, lda, strideA, b, ldb, strideB, beta, c, ldc, strideC, batchCount); gemm_switch_fp32accum(state, transa, transb, m, n, k, alpha, a, lda, strideA, b, ldb, strideB, beta, c, ldc, strideC, d, ldd, strideD, batchCount);
} }
/****** /******
......
...@@ -234,12 +234,12 @@ void fused_adam_cuda( ...@@ -234,12 +234,12 @@ void fused_adam_cuda(
} }
cudaStream_t stream = at::cuda::getCurrentCUDAStream(); cudaStream_t stream = at::cuda::getCurrentCUDAStream();
if (g.scalar_type() == at::ScalarType::Half) { if (g.scalar_type() == at::ScalarType::Half || g.scalar_type() == at::ScalarType::BFloat16) {
//all other values should be fp32 for half gradients //all other values should be fp32 for half gradients
AT_ASSERTM(p.scalar_type() == at::ScalarType::Float, "expected parameter to be of float type"); AT_ASSERTM(p.scalar_type() == at::ScalarType::Float, "expected parameter to be of float type");
//dispatch is done on the gradient type //dispatch is done on the gradient type
using namespace at; // prevents "toString is undefined" errors using namespace at; // prevents "toString is undefined" errors
DISPATCH_FLOAT_AND_HALF(g.scalar_type(), 0, "adam_cuda_kernel", DISPATCH_FLOAT_AND_HALF_AND_BFLOAT16(g.scalar_type(), 0, "adam_cuda_kernel",
using accscalar_t = at::acc_type<scalar_t_0, true>; using accscalar_t = at::acc_type<scalar_t_0, true>;
adam_cuda_kernel<accscalar_t, scalar_t_0><<<blocks,threadsPerBlock, 0, stream>>>( adam_cuda_kernel<accscalar_t, scalar_t_0><<<blocks,threadsPerBlock, 0, stream>>>(
p.DATA_PTR<accscalar_t>(), p.DATA_PTR<accscalar_t>(),
...@@ -308,12 +308,12 @@ void fused_adam_cuda_mt( ...@@ -308,12 +308,12 @@ void fused_adam_cuda_mt(
size_t tl_sz = tensor_lists.size(); size_t tl_sz = tensor_lists.size();
AT_ASSERTM(tl_sz == 4 || tl_sz == 5, "expected tensor lists of size 4 or 5"); AT_ASSERTM(tl_sz == 4 || tl_sz == 5, "expected tensor lists of size 4 or 5");
if (tensor_lists[3][0].scalar_type() == at::ScalarType::Half) { if (tensor_lists[3][0].scalar_type() == at::ScalarType::Half || tensor_lists[3][0].scalar_type() == at::ScalarType::BFloat16) {
//alher values should be fp32 for half gradients //alher values should be fp32 for half gradients
AT_ASSERTM(tensor_lists[0][0].scalar_type() == at::ScalarType::Float, "expected parameter to be of float type"); AT_ASSERTM(tensor_lists[0][0].scalar_type() == at::ScalarType::Float, "expected parameter to be of float type");
//dich is done on the gradient type //dich is done on the gradient type
if (tl_sz == 5) { if (tl_sz == 5) {
DISPATCH_FLOAT_AND_HALF(tensor_lists[3][0].scalar_type(), 0, "adam_cuda_mt_kernel", DISPATCH_FLOAT_AND_HALF_AND_BFLOAT16(tensor_lists[3][0].scalar_type(), 0, "adam_cuda_mt_kernel",
using accscalar_t = at::acc_type<scalar_t_0, true>; using accscalar_t = at::acc_type<scalar_t_0, true>;
multi_tensor_apply<5>( multi_tensor_apply<5>(
BLOCK_SIZE, BLOCK_SIZE,
...@@ -330,7 +330,7 @@ void fused_adam_cuda_mt( ...@@ -330,7 +330,7 @@ void fused_adam_cuda_mt(
decay); decay);
); );
} else { } else {
DISPATCH_FLOAT_AND_HALF(tensor_lists[3][0].scalar_type(), 0, "adam_cuda_mt_kernel", DISPATCH_FLOAT_AND_HALF_AND_BFLOAT16(tensor_lists[3][0].scalar_type(), 0, "adam_cuda_mt_kernel",
using accscalar_t = at::acc_type<scalar_t_0, true>; using accscalar_t = at::acc_type<scalar_t_0, true>;
multi_tensor_apply<4>( multi_tensor_apply<4>(
BLOCK_SIZE, BLOCK_SIZE,
...@@ -846,13 +846,13 @@ void fused_reversible_adam_cuda( ...@@ -846,13 +846,13 @@ void fused_reversible_adam_cuda(
} }
cudaStream_t stream = at::cuda::getCurrentCUDAStream(); cudaStream_t stream = at::cuda::getCurrentCUDAStream();
if (g.scalar_type() == at::ScalarType::Half) { if (g.scalar_type() == at::ScalarType::Half || g.scalar_type() == at::ScalarType::BFloat16) {
//all other values should be fp32 for half gradients //all other values should be fp32 for half gradients
AT_ASSERTM(p.scalar_type() == at::ScalarType::Float, "expected parameter to be of float type"); AT_ASSERTM(p.scalar_type() == at::ScalarType::Float, "expected parameter to be of float type");
//dispatch is done on the gradient type //dispatch is done on the gradient type
using namespace at; // prevents "toString is undefined" errors using namespace at; // prevents "toString is undefined" errors
if (p_copy.numel() == 0 || p_copy.scalar_type() == g.scalar_type()) { if (p_copy.numel() == 0 || p_copy.scalar_type() == g.scalar_type()) {
DISPATCH_FLOAT_AND_HALF(g.scalar_type(), 0, "adam_cuda_kernel", DISPATCH_FLOAT_AND_HALF_AND_BFLOAT16(g.scalar_type(), 0, "adam_cuda_kernel",
using accscalar_t = at::acc_type<scalar_t_0, true>; using accscalar_t = at::acc_type<scalar_t_0, true>;
reversible_adam_cuda_kernel<accscalar_t, scalar_t_0, scalar_t_0><<<blocks,threadsPerBlock, 0, stream>>>( reversible_adam_cuda_kernel<accscalar_t, scalar_t_0, scalar_t_0><<<blocks,threadsPerBlock, 0, stream>>>(
p.DATA_PTR<accscalar_t>(), p.DATA_PTR<accscalar_t>(),
...@@ -871,7 +871,7 @@ void fused_reversible_adam_cuda( ...@@ -871,7 +871,7 @@ void fused_reversible_adam_cuda(
); );
} else { } else {
AT_ASSERTM(p_copy.scalar_type() == at::ScalarType::Byte, "expected parameter to be of byte type"); AT_ASSERTM(p_copy.scalar_type() == at::ScalarType::Byte, "expected parameter to be of byte type");
DISPATCH_FLOAT_AND_HALF(g.scalar_type(), 0, "adam_cuda_e5m2_kernel", DISPATCH_FLOAT_AND_HALF_AND_BFLOAT16(g.scalar_type(), 0, "adam_cuda_e5m2_kernel",
using accscalar_t = at::acc_type<scalar_t_0, true>; using accscalar_t = at::acc_type<scalar_t_0, true>;
reversible_adam_cuda_kernel<accscalar_t, scalar_t_0, uint8_t><<<blocks,threadsPerBlock, 0, stream>>>( reversible_adam_cuda_kernel<accscalar_t, scalar_t_0, uint8_t><<<blocks,threadsPerBlock, 0, stream>>>(
p.DATA_PTR<accscalar_t>(), p.DATA_PTR<accscalar_t>(),
...@@ -991,12 +991,12 @@ void fused_maybe_adam_undo_cuda( ...@@ -991,12 +991,12 @@ void fused_maybe_adam_undo_cuda(
} }
cudaStream_t stream = at::cuda::getCurrentCUDAStream(); cudaStream_t stream = at::cuda::getCurrentCUDAStream();
if (g.scalar_type() == at::ScalarType::Half) { if (g.scalar_type() == at::ScalarType::Half || g.scalar_type() == at::ScalarType::BFloat16) {
//all other values should be fp32 for half gradients //all other values should be fp32 for half gradients
AT_ASSERTM(p.scalar_type() == at::ScalarType::Float, "expected parameter to be of float type"); AT_ASSERTM(p.scalar_type() == at::ScalarType::Float, "expected parameter to be of float type");
//dispatch is done on the gradient type //dispatch is done on the gradient type
using namespace at; // prevents "toString is undefined" errors using namespace at; // prevents "toString is undefined" errors
DISPATCH_FLOAT_AND_HALF(g.scalar_type(), 0, "adam_cuda_kernel", DISPATCH_FLOAT_AND_HALF_AND_BFLOAT16(g.scalar_type(), 0, "adam_cuda_kernel",
using accscalar_t = at::acc_type<scalar_t_0, true>; using accscalar_t = at::acc_type<scalar_t_0, true>;
maybe_adam_undo_cuda_kernel<accscalar_t, scalar_t_0><<<blocks,threadsPerBlock, 0, stream>>>( maybe_adam_undo_cuda_kernel<accscalar_t, scalar_t_0><<<blocks,threadsPerBlock, 0, stream>>>(
overflow_flag.numel() ? overflow_flag.DATA_PTR<int>() : NULL, overflow_flag.numel() ? overflow_flag.DATA_PTR<int>() : NULL,
......
...@@ -187,7 +187,7 @@ void multi_tensor_fused_adam_cuda( ...@@ -187,7 +187,7 @@ void multi_tensor_fused_adam_cuda(
AT_ASSERTM(tl_sz == 4 || tl_sz == 5, "expected tensor lists of size 4 or 5"); AT_ASSERTM(tl_sz == 4 || tl_sz == 5, "expected tensor lists of size 4 or 5");
if (tl_sz == 5) { if (tl_sz == 5) {
DISPATCH_FLOAT_AND_HALF(tensor_lists[3][0].scalar_type(), 0, "dist_adam_cuda_kernel", // g DISPATCH_FLOAT_AND_HALF_AND_BFLOAT16(tensor_lists[3][0].scalar_type(), 0, "dist_adam_cuda_kernel", // g
using accscalar_t = at::acc_type<scalar_t_0, true>; using accscalar_t = at::acc_type<scalar_t_0, true>;
multi_tensor_apply<5>( multi_tensor_apply<5>(
BLOCK_SIZE, BLOCK_SIZE,
...@@ -206,7 +206,7 @@ void multi_tensor_fused_adam_cuda( ...@@ -206,7 +206,7 @@ void multi_tensor_fused_adam_cuda(
(adamMode_t) mode); (adamMode_t) mode);
); );
} else { } else {
DISPATCH_FLOAT_AND_HALF(tensor_lists[3][0].scalar_type(), 0, "dist_adam_cuda_kernel", // g DISPATCH_FLOAT_AND_HALF_AND_BFLOAT16(tensor_lists[3][0].scalar_type(), 0, "dist_adam_cuda_kernel", // g
using accscalar_t = at::acc_type<scalar_t_0, true>; using accscalar_t = at::acc_type<scalar_t_0, true>;
multi_tensor_apply<4>( multi_tensor_apply<4>(
BLOCK_SIZE, BLOCK_SIZE,
......
...@@ -586,7 +586,7 @@ std::vector<Tensor> host_softmax_xentropy( ...@@ -586,7 +586,7 @@ std::vector<Tensor> host_softmax_xentropy(
const Tensor & labels_, const Tensor & labels_,
const float smoothing, const float smoothing,
const bool half_to_float){ const bool half_to_float){
if (half_to_float) AT_ASSERTM(input_.type().scalarType() == ScalarType::Half,"conversion is supported for Half type only"); if (half_to_float) AT_ASSERTM(input_.type().scalarType() == ScalarType::Half || input_.type().scalarType() == ScalarType::BFloat16,"conversion is supported for Half and BFloat16 type only");
AT_ASSERTM(labels_.type().scalarType() == ScalarType::Long,"Label type should be CUDA Long"); AT_ASSERTM(labels_.type().scalarType() == ScalarType::Long,"Label type should be CUDA Long");
auto input = input_.contiguous(); auto input = input_.contiguous();
...@@ -617,7 +617,7 @@ std::vector<Tensor> host_softmax_xentropy( ...@@ -617,7 +617,7 @@ std::vector<Tensor> host_softmax_xentropy(
dim3 grid(outer_size); dim3 grid(outer_size);
using namespace at; using namespace at;
DISPATCH_FLOAT_AND_HALF(input.scalar_type(), 0, "host_softmax_xentropy", DISPATCH_FLOAT_AND_HALF_AND_BFLOAT16(input.scalar_type(), 0, "host_softmax_xentropy",
using accscalar_t = at::acc_type<scalar_t_0, true>; using accscalar_t = at::acc_type<scalar_t_0, true>;
const int ILP = sizeof(float4)/sizeof(scalar_t_0); const int ILP = sizeof(float4)/sizeof(scalar_t_0);
dim3 block = SoftMax_getBlockSize(ILP, dim_size); dim3 block = SoftMax_getBlockSize(ILP, dim_size);
...@@ -685,7 +685,7 @@ Tensor host_softmax_xentropy_backward( ...@@ -685,7 +685,7 @@ Tensor host_softmax_xentropy_backward(
dim3 grid(outer_size); dim3 grid(outer_size);
DISPATCH_FLOAT_AND_HALF(gI.scalar_type(), 0, "host_softmax_xentropy_backward", DISPATCH_FLOAT_AND_HALF_AND_BFLOAT16(gI.scalar_type(), 0, "host_softmax_xentropy_backward",
using accscalar_t = acc_type<scalar_t_0, true>; using accscalar_t = acc_type<scalar_t_0, true>;
const int ILP = sizeof(float4)/sizeof(scalar_t_0); const int ILP = sizeof(float4)/sizeof(scalar_t_0);
dim3 block = SoftMax_getBlockSize(ILP, dim_size); dim3 block = SoftMax_getBlockSize(ILP, dim_size);
...@@ -724,7 +724,7 @@ at::Tensor softmax_xentropy_backward_cuda( ...@@ -724,7 +724,7 @@ at::Tensor softmax_xentropy_backward_cuda(
const float smoothing) { const float smoothing) {
bool half_to_float = grad_loss.type().scalarType() != logits.type().scalarType(); bool half_to_float = grad_loss.type().scalarType() != logits.type().scalarType();
if (half_to_float) { if (half_to_float) {
AT_ASSERTM((grad_loss.type().scalarType() == ScalarType::Float && logits.type().scalarType() == ScalarType::Half), "expected input and grad types to match, or input to be at::Half and grad to be at::Float"); AT_ASSERTM((grad_loss.type().scalarType() == ScalarType::Float && (logits.type().scalarType() == ScalarType::Half || logits.type().scalarType() == ScalarType::BFloat16)), "expected input and grad types to match, or input to be at::Half or at::Bfloat16 and grad to be at::Float");
} }
return host_softmax_xentropy_backward<LogSoftMaxBackwardEpilogue>(grad_loss, logits, max_log_sum_exp, labels, smoothing, half_to_float); return host_softmax_xentropy_backward<LogSoftMaxBackwardEpilogue>(grad_loss, logits, max_log_sum_exp, labels, smoothing, half_to_float);
} }
...@@ -263,6 +263,6 @@ class EncdecAttnFunc(torch.autograd.Function): ...@@ -263,6 +263,6 @@ class EncdecAttnFunc(torch.autograd.Function):
input_q_grads, input_kv_grads, \ input_q_grads, input_kv_grads, \
input_weight_q_grads, input_weight_kv_grads, output_weight_grads, \ input_weight_q_grads, input_weight_kv_grads, output_weight_grads, \
input_bias_grads_q, input_bias_grads_kv, output_bias_grads, \ input_bias_grads_q, input_bias_grads_kv, output_bias_grads, \
None, None None, None, None
encdec_attn_func = EncdecAttnFunc.apply encdec_attn_func = EncdecAttnFunc.apply
...@@ -9,7 +9,7 @@ class FastSelfAttnNormAddFunc(torch.autograd.Function): ...@@ -9,7 +9,7 @@ class FastSelfAttnNormAddFunc(torch.autograd.Function):
dropout_prob_t = torch.tensor([dropout_prob]) dropout_prob_t = torch.tensor([dropout_prob])
null_tensor = torch.tensor([]) null_tensor = torch.tensor([])
use_mask = (pad_mask is not None) use_mask = (pad_mask is not None)
print("---use_mask-----",use_mask)
lyr_nrm_results, \ lyr_nrm_results, \
lyr_nrm_mean, \ lyr_nrm_mean, \
lyr_nrm_invvar, \ lyr_nrm_invvar, \
......
...@@ -230,6 +230,6 @@ class SelfAttnFunc(torch.autograd.Function): ...@@ -230,6 +230,6 @@ class SelfAttnFunc(torch.autograd.Function):
input_grads, \ input_grads, \
input_weight_grads, output_weight_grads, \ input_weight_grads, output_weight_grads, \
input_bias_grads, output_bias_grads, \ input_bias_grads, output_bias_grads, \
None, None None, None, None
self_attn_func = SelfAttnFunc.apply self_attn_func = SelfAttnFunc.apply
...@@ -144,17 +144,19 @@ if "--distributed_adam" in sys.argv: ...@@ -144,17 +144,19 @@ if "--distributed_adam" in sys.argv:
from torch.utils.cpp_extension import BuildExtension from torch.utils.cpp_extension import BuildExtension
cmdclass['build_ext'] = BuildExtension cmdclass['build_ext'] = BuildExtension
if torch.utils.cpp_extension.CUDA_HOME is None: if torch.utils.cpp_extension.CUDA_HOME is None and not IS_ROCM_PYTORCH:
raise RuntimeError("--distributed_adam was requested, but nvcc was not found. Are you sure your environment has nvcc available? If you're installing within a container from https://hub.docker.com/r/pytorch/pytorch, only images whose names contain 'devel' will provide nvcc.") raise RuntimeError("--distributed_adam was requested, but nvcc was not found. Are you sure your environment has nvcc available? If you're installing within a container from https://hub.docker.com/r/pytorch/pytorch, only images whose names contain 'devel' will provide nvcc.")
else: else:
nvcc_args_adam = ['-O3', '--use_fast_math'] + version_dependent_macros
hipcc_args_adam = ['-O3'] + version_dependent_macros
ext_modules.append( ext_modules.append(
CUDAExtension(name='distributed_adam_cuda', CUDAExtension(name='distributed_adam_cuda',
sources=['apex/contrib/csrc/optimizers/multi_tensor_distopt_adam.cpp', sources=['apex/contrib/csrc/optimizers/multi_tensor_distopt_adam.cpp',
'apex/contrib/csrc/optimizers/multi_tensor_distopt_adam_kernel.cu'], 'apex/contrib/csrc/optimizers/multi_tensor_distopt_adam_kernel.cu'],
include_dirs=[os.path.join(this_dir, 'csrc')], include_dirs=[os.path.join(this_dir, 'csrc'),
os.path.join(this_dir, 'apex/contrib/csrc/optimizers')],
extra_compile_args={'cxx': ['-O3',] + version_dependent_macros, extra_compile_args={'cxx': ['-O3',] + version_dependent_macros,
'nvcc':['-O3', 'nvcc':nvcc_args_adam if not IS_ROCM_PYTORCH else hipcc_args_adam}))
'--use_fast_math'] + version_dependent_macros}))
if "--distributed_lamb" in sys.argv: if "--distributed_lamb" in sys.argv:
from torch.utils.cpp_extension import CUDAExtension from torch.utils.cpp_extension import CUDAExtension
...@@ -275,7 +277,8 @@ if "--xentropy" in sys.argv: ...@@ -275,7 +277,8 @@ if "--xentropy" in sys.argv:
CUDAExtension(name='xentropy_cuda', CUDAExtension(name='xentropy_cuda',
sources=['apex/contrib/csrc/xentropy/interface.cpp', sources=['apex/contrib/csrc/xentropy/interface.cpp',
'apex/contrib/csrc/xentropy/xentropy_kernel.cu'], 'apex/contrib/csrc/xentropy/xentropy_kernel.cu'],
include_dirs=[os.path.join(this_dir, 'csrc')], include_dirs=[os.path.join(this_dir, 'csrc'),
os.path.join(this_dir, 'apex/contrib/csrc/xentropy')],
extra_compile_args={'cxx': ['-O3'] + version_dependent_macros, extra_compile_args={'cxx': ['-O3'] + version_dependent_macros,
'nvcc':['-O3'] + version_dependent_macros})) 'nvcc':['-O3'] + version_dependent_macros}))
...@@ -297,7 +300,8 @@ if "--deprecated_fused_adam" in sys.argv: ...@@ -297,7 +300,8 @@ if "--deprecated_fused_adam" in sys.argv:
CUDAExtension(name='fused_adam_cuda', CUDAExtension(name='fused_adam_cuda',
sources=['apex/contrib/csrc/optimizers/fused_adam_cuda.cpp', sources=['apex/contrib/csrc/optimizers/fused_adam_cuda.cpp',
'apex/contrib/csrc/optimizers/fused_adam_cuda_kernel.cu'], 'apex/contrib/csrc/optimizers/fused_adam_cuda_kernel.cu'],
include_dirs=[os.path.join(this_dir, 'csrc')], include_dirs=[os.path.join(this_dir, 'csrc'),
os.path.join(this_dir, 'apex/contrib/csrc/optimizers')],
extra_compile_args={'cxx': ['-O3'] + version_dependent_macros, extra_compile_args={'cxx': ['-O3'] + version_dependent_macros,
'nvcc' : nvcc_args_fused_adam if not IS_ROCM_PYTORCH else hipcc_args_fused_adam})) 'nvcc' : nvcc_args_fused_adam if not IS_ROCM_PYTORCH else hipcc_args_fused_adam}))
...@@ -356,7 +360,7 @@ if "--fast_layer_norm" in sys.argv: ...@@ -356,7 +360,7 @@ if "--fast_layer_norm" in sys.argv:
'-gencode', 'arch=compute_70,code=sm_70', '-gencode', 'arch=compute_70,code=sm_70',
'-U__CUDA_NO_HALF_OPERATORS__', '-U__CUDA_NO_HALF_OPERATORS__',
'-U__CUDA_NO_HALF_CONVERSIONS__', '-U__CUDA_NO_HALF_CONVERSIONS__',
'-I./apex/contrib/csrc/layer_norm/', '-Iapex/contrib/csrc/layer_norm',
'--expt-relaxed-constexpr', '--expt-relaxed-constexpr',
'--expt-extended-lambda', '--expt-extended-lambda',
'--use_fast_math'] + version_dependent_macros + generator_flag + cc_flag})) '--use_fast_math'] + version_dependent_macros + generator_flag + cc_flag}))
...@@ -368,121 +372,98 @@ if "--fast_multihead_attn" in sys.argv: ...@@ -368,121 +372,98 @@ if "--fast_multihead_attn" in sys.argv:
from torch.utils.cpp_extension import BuildExtension from torch.utils.cpp_extension import BuildExtension
cmdclass['build_ext'] = BuildExtension.with_options(use_ninja=False) cmdclass['build_ext'] = BuildExtension.with_options(use_ninja=False)
if torch.utils.cpp_extension.CUDA_HOME is None: if torch.utils.cpp_extension.CUDA_HOME is None and not IS_ROCM_PYTORCH:
raise RuntimeError("--fast_multihead_attn was requested, but nvcc was not found. Are you sure your environment has nvcc available? If you're installing within a container from https://hub.docker.com/r/pytorch/pytorch, only images whose names contain 'devel' will provide nvcc.") raise RuntimeError("--fast_multihead_attn was requested, but nvcc was not found. Are you sure your environment has nvcc available? If you're installing within a container from https://hub.docker.com/r/pytorch/pytorch, only images whose names contain 'devel' will provide nvcc.")
else: else:
# Check, if CUDA11 is installed for compute capability 8.0 # Check, if CUDA11 is installed for compute capability 8.0
cc_flag = [] cc_flag = []
_, bare_metal_major, _ = get_cuda_bare_metal_version(cpp_extension.CUDA_HOME) if not IS_ROCM_PYTORCH:
if int(bare_metal_major) >= 11: _, bare_metal_major, _ = get_cuda_bare_metal_version(cpp_extension.CUDA_HOME)
cc_flag.append('-gencode') if int(bare_metal_major) >= 11:
cc_flag.append('arch=compute_80,code=sm_80') cc_flag.append('-gencode')
cc_flag.append('arch=compute_80,code=sm_80')
subprocess.run(["git", "submodule", "update", "--init", "apex/contrib/csrc/multihead_attn/cutlass"]) subprocess.run(["git", "submodule", "update", "--init", "apex/contrib/csrc/multihead_attn/cutlass"])
nvcc_args_mha = ['-O3',
'-gencode',
'arch=compute_70,code=sm_70',
'-Iapex/contrib/csrc/multihead_attn/cutlass',
'-U__CUDA_NO_HALF_OPERATORS__',
'-U__CUDA_NO_HALF_CONVERSIONS__',
'--expt-relaxed-constexpr',
'--expt-extended-lambda',
'--use_fast_math'] + version_dependent_macros + generator_flag + cc_flag
hipcc_args_mha = ['-O3',
'-Iapex/contrib/csrc/multihead_attn/cutlass',
'-I/opt/rocm/include/hiprand',
'-I/opt/rocm/include/rocrand',
'-U__HIP_NO_HALF_OPERATORS__',
'-U__HIP_NO_HALF_CONVERSIONS__'] + version_dependent_macros + generator_flag
ext_modules.append( ext_modules.append(
CUDAExtension(name='fast_additive_mask_softmax_dropout', CUDAExtension(name='fast_additive_mask_softmax_dropout',
sources=['apex/contrib/csrc/multihead_attn/additive_masked_softmax_dropout.cpp', sources=['apex/contrib/csrc/multihead_attn/additive_masked_softmax_dropout_cpp.cpp',
'apex/contrib/csrc/multihead_attn/additive_masked_softmax_dropout_cuda.cu'], 'apex/contrib/csrc/multihead_attn/additive_masked_softmax_dropout_cuda.cu'],
include_dirs=[os.path.join(this_dir, 'csrc'),
os.path.join(this_dir, 'apex/contrib/csrc/multihead_attn')],
extra_compile_args={'cxx': ['-O3',] + version_dependent_macros + generator_flag, extra_compile_args={'cxx': ['-O3',] + version_dependent_macros + generator_flag,
'nvcc':['-O3', 'nvcc':nvcc_args_mha if not IS_ROCM_PYTORCH else hipcc_args_mha}))
'-gencode', 'arch=compute_70,code=sm_70',
'-I./apex/contrib/csrc/multihead_attn/cutlass/',
'-U__CUDA_NO_HALF_OPERATORS__',
'-U__CUDA_NO_HALF_CONVERSIONS__',
'--expt-relaxed-constexpr',
'--expt-extended-lambda',
'--use_fast_math'] + version_dependent_macros + generator_flag + cc_flag}))
ext_modules.append( ext_modules.append(
CUDAExtension(name='fast_mask_softmax_dropout', CUDAExtension(name='fast_mask_softmax_dropout',
sources=['apex/contrib/csrc/multihead_attn/masked_softmax_dropout.cpp', sources=['apex/contrib/csrc/multihead_attn/masked_softmax_dropout_cpp.cpp',
'apex/contrib/csrc/multihead_attn/masked_softmax_dropout_cuda.cu'], 'apex/contrib/csrc/multihead_attn/masked_softmax_dropout_cuda.cu'],
include_dirs=[os.path.join(this_dir, 'csrc'),
os.path.join(this_dir, 'apex/contrib/csrc/multihead_attn')],
extra_compile_args={'cxx': ['-O3',] + version_dependent_macros + generator_flag, extra_compile_args={'cxx': ['-O3',] + version_dependent_macros + generator_flag,
'nvcc':['-O3', 'nvcc':nvcc_args_mha if not IS_ROCM_PYTORCH else hipcc_args_mha}))
'-gencode', 'arch=compute_70,code=sm_70',
'-I./apex/contrib/csrc/multihead_attn/cutlass/',
'-U__CUDA_NO_HALF_OPERATORS__',
'-U__CUDA_NO_HALF_CONVERSIONS__',
'--expt-relaxed-constexpr',
'--expt-extended-lambda',
'--use_fast_math'] + version_dependent_macros + generator_flag + cc_flag}))
ext_modules.append( ext_modules.append(
CUDAExtension(name='fast_self_multihead_attn_bias_additive_mask', CUDAExtension(name='fast_self_multihead_attn_bias_additive_mask',
sources=['apex/contrib/csrc/multihead_attn/self_multihead_attn_bias_additive_mask.cpp', sources=['apex/contrib/csrc/multihead_attn/self_multihead_attn_bias_additive_mask_cpp.cpp',
'apex/contrib/csrc/multihead_attn/self_multihead_attn_bias_additive_mask_cuda.cu'], 'apex/contrib/csrc/multihead_attn/self_multihead_attn_bias_additive_mask_cuda.cu'],
include_dirs=[os.path.join(this_dir, 'csrc'),
os.path.join(this_dir, 'apex/contrib/csrc/multihead_attn')],
extra_compile_args={'cxx': ['-O3',] + version_dependent_macros + generator_flag, extra_compile_args={'cxx': ['-O3',] + version_dependent_macros + generator_flag,
'nvcc':['-O3', 'nvcc':nvcc_args_mha if not IS_ROCM_PYTORCH else hipcc_args_mha}))
'-gencode', 'arch=compute_70,code=sm_70',
'-I./apex/contrib/csrc/multihead_attn/cutlass/',
'-U__CUDA_NO_HALF_OPERATORS__',
'-U__CUDA_NO_HALF_CONVERSIONS__',
'--expt-relaxed-constexpr',
'--expt-extended-lambda',
'--use_fast_math'] + version_dependent_macros + generator_flag + cc_flag}))
ext_modules.append( ext_modules.append(
CUDAExtension(name='fast_self_multihead_attn_bias', CUDAExtension(name='fast_self_multihead_attn_bias',
sources=['apex/contrib/csrc/multihead_attn/self_multihead_attn_bias.cpp', sources=['apex/contrib/csrc/multihead_attn/self_multihead_attn_bias_cpp.cpp',
'apex/contrib/csrc/multihead_attn/self_multihead_attn_bias_cuda.cu'], 'apex/contrib/csrc/multihead_attn/self_multihead_attn_bias_cuda.cu'],
include_dirs=[os.path.join(this_dir, 'csrc'),
os.path.join(this_dir, 'apex/contrib/csrc/multihead_attn')],
extra_compile_args={'cxx': ['-O3',] + version_dependent_macros + generator_flag, extra_compile_args={'cxx': ['-O3',] + version_dependent_macros + generator_flag,
'nvcc':['-O3', 'nvcc':nvcc_args_mha if not IS_ROCM_PYTORCH else hipcc_args_mha}))
'-gencode', 'arch=compute_70,code=sm_70',
'-I./apex/contrib/csrc/multihead_attn/cutlass/',
'-U__CUDA_NO_HALF_OPERATORS__',
'-U__CUDA_NO_HALF_CONVERSIONS__',
'--expt-relaxed-constexpr',
'--expt-extended-lambda',
'--use_fast_math'] + version_dependent_macros + generator_flag + cc_flag}))
ext_modules.append( ext_modules.append(
CUDAExtension(name='fast_self_multihead_attn', CUDAExtension(name='fast_self_multihead_attn',
sources=['apex/contrib/csrc/multihead_attn/self_multihead_attn.cpp', sources=['apex/contrib/csrc/multihead_attn/self_multihead_attn_cpp.cpp',
'apex/contrib/csrc/multihead_attn/self_multihead_attn_cuda.cu'], 'apex/contrib/csrc/multihead_attn/self_multihead_attn_cuda.cu'],
include_dirs=[os.path.join(this_dir, 'csrc'),
os.path.join(this_dir, 'apex/contrib/csrc/multihead_attn')],
extra_compile_args={'cxx': ['-O3',] + version_dependent_macros + generator_flag, extra_compile_args={'cxx': ['-O3',] + version_dependent_macros + generator_flag,
'nvcc':['-O3', 'nvcc':nvcc_args_mha if not IS_ROCM_PYTORCH else hipcc_args_mha}))
'-gencode', 'arch=compute_70,code=sm_70',
'-I./apex/contrib/csrc/multihead_attn/cutlass/',
'-U__CUDA_NO_HALF_OPERATORS__',
'-U__CUDA_NO_HALF_CONVERSIONS__',
'--expt-relaxed-constexpr',
'--expt-extended-lambda',
'--use_fast_math'] + version_dependent_macros + generator_flag + cc_flag}))
ext_modules.append( ext_modules.append(
CUDAExtension(name='fast_self_multihead_attn_norm_add', CUDAExtension(name='fast_self_multihead_attn_norm_add',
sources=['apex/contrib/csrc/multihead_attn/self_multihead_attn_norm_add.cpp', sources=['apex/contrib/csrc/multihead_attn/self_multihead_attn_norm_add_cpp.cpp',
'apex/contrib/csrc/multihead_attn/self_multihead_attn_norm_add_cuda.cu'], 'apex/contrib/csrc/multihead_attn/self_multihead_attn_norm_add_cuda.cu'],
include_dirs=[os.path.join(this_dir, 'csrc'),
os.path.join(this_dir, 'apex/contrib/csrc/multihead_attn')],
extra_compile_args={'cxx': ['-O3',] + version_dependent_macros + generator_flag, extra_compile_args={'cxx': ['-O3',] + version_dependent_macros + generator_flag,
'nvcc':['-O3', 'nvcc':nvcc_args_mha if not IS_ROCM_PYTORCH else hipcc_args_mha}))
'-gencode', 'arch=compute_70,code=sm_70',
'-I./apex/contrib/csrc/multihead_attn/cutlass/',
'-U__CUDA_NO_HALF_OPERATORS__',
'-U__CUDA_NO_HALF_CONVERSIONS__',
'--expt-relaxed-constexpr',
'--expt-extended-lambda',
'--use_fast_math'] + version_dependent_macros + generator_flag + cc_flag}))
ext_modules.append( ext_modules.append(
CUDAExtension(name='fast_encdec_multihead_attn', CUDAExtension(name='fast_encdec_multihead_attn',
sources=['apex/contrib/csrc/multihead_attn/encdec_multihead_attn.cpp', sources=['apex/contrib/csrc/multihead_attn/encdec_multihead_attn_cpp.cpp',
'apex/contrib/csrc/multihead_attn/encdec_multihead_attn_cuda.cu'], 'apex/contrib/csrc/multihead_attn/encdec_multihead_attn_cuda.cu'],
include_dirs=[os.path.join(this_dir, 'csrc'),
os.path.join(this_dir, 'apex/contrib/csrc/multihead_attn')],
extra_compile_args={'cxx': ['-O3',] + version_dependent_macros + generator_flag, extra_compile_args={'cxx': ['-O3',] + version_dependent_macros + generator_flag,
'nvcc':['-O3', 'nvcc':nvcc_args_mha if not IS_ROCM_PYTORCH else hipcc_args_mha}))
'-gencode', 'arch=compute_70,code=sm_70',
'-I./apex/contrib/csrc/multihead_attn/cutlass/',
'-U__CUDA_NO_HALF_OPERATORS__',
'-U__CUDA_NO_HALF_CONVERSIONS__',
'--expt-relaxed-constexpr',
'--expt-extended-lambda',
'--use_fast_math'] + version_dependent_macros + generator_flag + cc_flag}))
ext_modules.append( ext_modules.append(
CUDAExtension(name='fast_encdec_multihead_attn_norm_add', CUDAExtension(name='fast_encdec_multihead_attn_norm_add',
sources=['apex/contrib/csrc/multihead_attn/encdec_multihead_attn_norm_add.cpp', sources=['apex/contrib/csrc/multihead_attn/encdec_multihead_attn_norm_add_cpp.cpp',
'apex/contrib/csrc/multihead_attn/encdec_multihead_attn_norm_add_cuda.cu'], 'apex/contrib/csrc/multihead_attn/encdec_multihead_attn_norm_add_cuda.cu'],
include_dirs=[os.path.join(this_dir, 'csrc'),
os.path.join(this_dir, 'apex/contrib/csrc/multihead_attn')],
extra_compile_args={'cxx': ['-O3',] + version_dependent_macros + generator_flag, extra_compile_args={'cxx': ['-O3',] + version_dependent_macros + generator_flag,
'nvcc':['-O3', 'nvcc':nvcc_args_mha if not IS_ROCM_PYTORCH else hipcc_args_mha}))
'-gencode', 'arch=compute_70,code=sm_70',
'-I./apex/contrib/csrc/multihead_attn/cutlass/',
'-U__CUDA_NO_HALF_OPERATORS__',
'-U__CUDA_NO_HALF_CONVERSIONS__',
'--expt-relaxed-constexpr',
'--expt-extended-lambda',
'--use_fast_math'] + version_dependent_macros + generator_flag + cc_flag}))
setup( setup(
name='apex', name='apex',
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment