"git@developer.sourcefind.cn:OpenDAS/torchaudio.git" did not exist on "841879099cedbe15addb7f19f17e276cab5bf535"
Commit 93f91cde authored by Kexin Yu's avatar Kexin Yu
Browse files

Merge remote-tracking branch 'upstream/master'

parents 33082d2b 80b90b9d
from .self_multihead_attn import SelfMultiheadAttn
from .encdec_multihead_attn import EncdecMultiheadAttn
import torch
from torch import nn
from torch.nn import Parameter
import torch.nn.functional as F
from .encdec_multihead_attn_func import encdec_attn_func
from .fast_encdec_multihead_attn_func import fast_encdec_attn_func
from .fast_encdec_multihead_attn_norm_add_func import fast_encdec_attn_norm_add_func
@torch.jit.script
def jit_dropout_add(x, residual, prob, is_training):
# type: (Tensor, Tensor, float, bool) -> Tensor
out = F.dropout(x, p=prob, training=True)
out = residual + out
return out
class EncdecMultiheadAttn(nn.Module):
"""Multi-headed attention.
See "Attention Is All You Need" for more details.
"""
def __init__(self, embed_dim, num_heads, dropout=0., bias=False, include_norm_add=False, impl='fast'):
super().__init__()
self.embed_dim = embed_dim
self.num_heads = num_heads
self.dropout = dropout
self.head_dim = embed_dim // num_heads
assert self.head_dim * num_heads == self.embed_dim, "embed_dim must be divisible by num_heads"
self.bias = bias
self.include_norm_add = include_norm_add
self.impl = impl
self.scaling = self.head_dim**-0.5
self.in_proj_weight_q = Parameter(torch.Tensor(embed_dim, embed_dim))
self.in_proj_weight_kv = Parameter(torch.Tensor(2*embed_dim, embed_dim))
self.out_proj_weight = Parameter(torch.Tensor(embed_dim, embed_dim))
if self.bias:
assert impl != 'fast', "ERROR! The Fast implementation does not support biases!"
self.in_proj_bias_q = Parameter(torch.Tensor(embed_dim))
self.in_proj_bias_kv = Parameter(torch.Tensor(2*embed_dim))
self.out_proj_bias = Parameter(torch.Tensor(embed_dim))
else:
self.register_parameter('in_proj_bias_q', None)
self.register_parameter('in_proj_bias_kv', None)
self.in_proj_bias_q = None
self.in_proj_bias_kv = None
self.out_proj_bias = None
if self.include_norm_add:
if impl == 'fast':
self.lyr_nrm_gamma_weights = Parameter(torch.Tensor(embed_dim))
self.lyr_nrm_beta_weights = Parameter(torch.Tensor(embed_dim))
self.lyr_nrm = None
else:
self.register_parameter('lyr_norm_gamma_weights', None)
self.register_parameter('lyr_norm_beta_weights', None)
self.lyr_nrm_gamma_weights = None
self.lyr_nrm_beta_weights = None
self.lyr_nrm = torch.nn.LayerNorm(embed_dim)
self.reset_parameters()
if self.include_norm_add:
if impl == 'fast' : self.attn_func = fast_encdec_attn_norm_add_func
elif impl == 'default' : self.attn_func = encdec_attn_func
else : assert False, "Unsupported impl: {} !".format(impl)
else:
if impl == 'fast' : self.attn_func = fast_encdec_attn_func
elif impl == 'default' : self.attn_func = encdec_attn_func
else : assert False, "Unsupported impl: {} !".format(impl)
def reset_parameters(self):
nn.init.xavier_uniform_(self.in_proj_weight_q)
nn.init.xavier_uniform_(self.in_proj_weight_kv)
nn.init.xavier_uniform_(self.out_proj_weight)
if self.bias:
nn.init.constant_(self.in_proj_bias_q, 0.)
nn.init.constant_(self.in_proj_bias_kv, 0.)
nn.init.constant_(self.out_proj_bias, 0.)
if self.include_norm_add:
if self.impl == 'fast' :
nn.init.ones_(self.lyr_nrm_gamma_weights)
nn.init.zeros_(self.lyr_nrm_beta_weights)
else:
self.lyr_nrm.reset_parameters()
def forward(self, query, key, value, key_padding_mask=None, need_weights=False, attn_mask=None, is_training=True):
"""Input shape: Time x Batch x Channel
Self-attention can be implemented by passing in the same arguments for
query, key and value. Future timesteps can be masked with the
`mask_future_timesteps` argument. Padding elements can be excluded from
the key by passing a binary ByteTensor (`key_padding_mask`) with shape:
batch x src_len, where padding elements are indicated by 1s.
"""
if key_padding_mask is not None:
assert (attn_mask is None), "ERROR attn_mask and key_padding_mask should not be both defined!"
mask = key_padding_mask
elif attn_mask is not None:
mask = attn_mask
else:
mask = None
if self.include_norm_add:
if self.impl == 'fast':
outputs = self.attn_func(attn_mask is not None, is_training, self.num_heads, query, key,
self.lyr_nrm_gamma_weights, self.lyr_nrm_beta_weights,
self.in_proj_weight_q, self.in_proj_weight_kv, self.out_proj_weight, mask, self.dropout)
else:
lyr_nrm_results = self.lyr_nrm(query)
outputs = self.attn_func(attn_mask is not None, is_training, self.num_heads, self.scaling, lyr_nrm_results, key,
self.in_proj_weight_q, self.in_proj_weight_kv, self.out_proj_weight,
self.in_proj_bias_q, self.in_proj_bias_kv, self.out_proj_bias,
mask, self.dropout)
if is_training:
outputs = jit_dropout_add(outputs, query, self.dropout, is_training)
else:
outputs = outputs + query
else:
if self.impl == 'fast':
outputs = self.attn_func(attn_mask is not None, is_training, self.num_heads, query, key,
self.in_proj_weight_q, self.in_proj_weight_kv, self.out_proj_weight, mask, self.dropout)
else:
outputs = self.attn_func(attn_mask is not None, is_training, self.num_heads, self.scaling, query, key,
self.in_proj_weight_q, self.in_proj_weight_kv, self.out_proj_weight,
self.in_proj_bias_q, self.in_proj_bias_kv, self.out_proj_bias,
mask, self.dropout)
return outputs,None
import torch
import torch.nn.functional as F
class EncdecAttnFunc(torch.autograd.Function):
@staticmethod
def forward(ctx, use_time_mask, is_training, heads, scale, inputs_q, inputs_kv,
input_weights_q, input_weights_kv, output_weights,
input_biases_q, input_biases_kv, output_biases,
mask, dropout_prob):
use_biases_t = torch.tensor([input_biases_q is not None])
heads_t = torch.tensor([heads])
scale_t = torch.tensor([scale])
dropout_prob_t = torch.tensor([dropout_prob])
null_tensor = torch.tensor([])
head_dim = inputs_q.size(2) // heads
# Input Linear GEMM Q
# input1: (activations) [seql_q, seqs, embed_dim(1024)]
# input2: (weights) [embed_dim (1024), embed_dim (1024)] (transpose [0,1])
# output: [seql_q, seqs, embed_dim]
# GEMM: ( (seql_q*seqs) x embed_dim ) x ( embed_dim x embed_dim ) = (seql_q*seqs x embed_dim)
if use_biases_t[0]:
input_lin_q_results = torch.addmm(input_biases_q,
inputs_q.view(inputs_q.size(0) * inputs_q.size(1), inputs_q.size(2)),
input_weights_q.transpose(0,1),
beta=1., alpha=1.)
else:
input_lin_q_results = torch.mm(inputs_q.view(inputs_q.size(0) * inputs_q.size(1), inputs_q.size(2)), input_weights_q.transpose(0,1))
input_lin_q_results = input_lin_q_results.view(inputs_q.size(0), inputs_q.size(1), input_weights_q.size(0))
# Input Linear GEMM KV
# input1: (activations) [seql_k, seqs, embed_dim(1024)]
# input2: (weights) [embed_dim*2 (2048), embed_dim (1024)] (transpose [0,1])
# output: [seql_k, seqs, embed_dim*2]
# GEMM: ( (seql_k*seqs) x embed_dim ) x ( embed_dim x embed_dim*2 ) = (seql_k*seqs x embed_dim*2)
if use_biases_t[0]:
input_lin_kv_results = torch.addmm(input_biases_kv,
inputs_kv.view(inputs_kv.size(0) * inputs_kv.size(1), inputs_kv.size(2)),
input_weights_kv.transpose(0,1),
beta=1., alpha=1.)
else:
input_lin_kv_results = torch.mm(inputs_kv.view(inputs_kv.size(0) * inputs_kv.size(1), inputs_kv.size(2)), input_weights_kv.transpose(0,1))
input_lin_kv_results = input_lin_kv_results.view(inputs_kv.size(0), inputs_kv.size(1), input_weights_kv.size(0))
# Slice out k,v from one big Input Linear outuput (should only impact meta data, no copies!)
# Sequences and heads are combined to make the batch of the Batched GEMM
# input_lin_kv_results: [seql_k, seqs, heads(16), 2, head_dim(64)]
# input_lin_kv_results: [seql_k, batches=seqs*heads, 2, head_dim]
queries = input_lin_q_results.view(inputs_q.size(0), inputs_q.size(1)*heads, head_dim)
input_lin_kv_results = input_lin_kv_results.view(inputs_kv.size(0), inputs_kv.size(1)*heads, 2, head_dim)
keys = input_lin_kv_results[:,:,0,:]
values = input_lin_kv_results[:,:,1,:]
# Matmul1 Batched GEMMs
# The output tensor is specified prior to the Batch GEMM because baddbmm requires its specification
# baddbmm is used to apply the scale parameter via the Batched GEMM's alpha parameter instead of
# a separate elementwise operation.
# Input1: (Queries) [seql_q, seqs*heads, head_dim] tranpose(0,1)
# Input2: (Keys) [seql_k, seqs*heads, head_dim] transpose(0,1)
# output: [seqs*heads, seql_q, seql_k]
# GEMM: Per batch: ( seql_q x head_dim ) x ( head_dim x seql_k ) = ( seql_q x seql_k )
matmul1_results = torch.empty((queries.size(1),queries.size(0),keys.size(0)), dtype=queries.dtype, device=torch.device('cuda'))
matmul1_results = torch.baddbmm(matmul1_results, queries.transpose(0,1), keys.transpose(0,1).transpose(1,2), out=matmul1_results, beta=0.0, alpha=scale_t[0])
if mask is not None:
# Self Attention Time Mask
if use_time_mask:
assert (len(mask.size()) == 2), "Timing mask is not 2D!"
assert (mask.size(0) == mask.size(1)), "Sequence length should match!"
mask = mask.to(torch.bool)
matmul1_results = matmul1_results.masked_fill_(mask, float('-inf'))
# Key Padding Mask
else:
batches,seql_q,seql_k = matmul1_results.size()
seqs = int(batches / heads)
matmul1_results = matmul1_results.view(seqs, heads, seql_q, seql_k)
mask = mask.to(torch.bool)
matmul1_results = matmul1_results.masked_fill_(mask.unsqueeze(1).unsqueeze(2), float('-inf'))
matmul1_results = matmul1_results.view(seqs*heads, seql_q, seql_k)
softmax_results = F.softmax(matmul1_results, dim=-1)
# Dropout - is not executed for inference
if is_training:
dropout_results,dropout_mask = torch._fused_dropout(softmax_results, p=(1.-dropout_prob_t[0]))
else:
dropout_results = softmax_results
dropout_mask = null_tensor
# Matmul2 Batched GEMMs
# The output tensor specification is needed here to specify the non-standard output.
# Given that pytorch cannot currently perform autograd with an output tensor specified,
# this requires a backward pass specified.
# Input1: from_softmax [seqs*heads, seql_q, seql_k]
# Input2: (values) [seql_v, seqs*heads, head_dim] transpose(0,1)
# Output: [seql_q, seqs*heads, head_dim] transpose(0,1)
# GEMM: Per batch: ( seql_q x seql_k ) x ( seql_k x head_dim ) = (seql_q x head_dim)
matmul2_results = torch.empty((dropout_results.size(1), dropout_results.size(0), values.size(2)), dtype=dropout_results.dtype, device=torch.device('cuda')).transpose(1,0)
matmul2_results = torch.bmm(dropout_results, values.transpose(0,1), out=matmul2_results)
matmul2_results = matmul2_results.transpose(0, 1).contiguous().view(inputs_q.size(0), inputs_q.size(1), inputs_q.size(2))
# Output Linear GEMM
# Input1: (activations) [seql_q, seqs, embed_dim=heads*head_dim]
# Input2: (weights) [ embed_dim, embed_dim ] transpose(0,1)
# Output: [ seql_q, seqs, embed_dim ]
# GEMM: ( seql_q*seqs x embed_dim ) x ( embed_dim x embed_dim ) = ( seql_q*seqs x embed_dim )
if use_biases_t[0]:
outputs = torch.addmm(output_biases,
matmul2_results.view(inputs_q.size(0) * inputs_q.size(1), inputs_q.size(2)),
output_weights.transpose(0,1),
beta=1., alpha=1.)
else:
outputs = torch.mm(matmul2_results.view(inputs_q.size(0) * inputs_q.size(1), inputs_q.size(2)), output_weights.transpose(0,1))
outputs = outputs.view(inputs_q.size(0), inputs_q.size(1), output_weights.size(0))
ctx.save_for_backward(use_biases_t, \
heads_t, \
scale_t, \
matmul2_results, \
dropout_results, \
softmax_results, \
input_lin_q_results, \
input_lin_kv_results, \
inputs_q, \
inputs_kv, \
input_weights_q, \
input_weights_kv, \
output_weights, \
dropout_mask, \
dropout_prob_t)
return outputs.detach()
@staticmethod
def backward(ctx, output_grads):
use_biases_t, \
heads_t, \
scale_t, \
matmul2_results, \
dropout_results, \
softmax_results, \
input_lin_q_results, \
input_lin_kv_results, \
inputs_q, \
inputs_kv, \
input_weights_q, \
input_weights_kv, \
output_weights, \
dropout_mask, \
dropout_prob_t = ctx.saved_tensors
head_dim = inputs_q.size(2) // heads_t[0]
# Slice out k,v from one big Input Linear outuput (should only impact meta data, no copies!)
# Sequences and heads are combined to make the batch of the Batched GEMM
# input_lin_kv_results: [seql_k, seqs, heads(16), 2, head_dim(64)]
# input_lin_kv_results: [seql_k, batches=seqs*heads, 2, head_dim]
queries = input_lin_q_results.view(inputs_q.size(0), inputs_q.size(1)*heads_t[0], head_dim)
input_lin_kv_results = input_lin_kv_results.view(inputs_kv.size(0), inputs_kv.size(1)*heads_t[0], 2, head_dim)
keys = input_lin_kv_results[:,:,0,:]
values = input_lin_kv_results[:,:,1,:]
# Slice out k,v from one big set of gradients entering the input linear's bprop (should only impact meta data, no copies!)
# The gradients are identical in size to the Input Linear outputs.
# The tensor is declared before hand to properly slice out query, key, and value grads.
input_lin_kv_results_grads = torch.empty_like(input_lin_kv_results)
queries_grads = torch.empty_like(queries)
keys_grads = input_lin_kv_results_grads[:,:,0,:]
values_grads = input_lin_kv_results_grads[:,:,1,:]
# Output Linear GEMM - DGRAD
# Input1: (data grads) [seql_q, seqs, embed_dim=heads*head_dim]
# Input2: (weights) [ embed_dim, embed_dim ]
# Output: [ seql_q, seqs, embed_dim ]
# GEMM: ( seql_q*seqs x embed_dim ) x ( embed_dim x embed_dim ) = ( seql_q*seqs x embed_dim )
output_lin_grads = torch.mm(output_grads.view(output_grads.size(0) * output_grads.size(1), output_grads.size(2)), output_weights)
output_lin_grads = output_lin_grads.view(output_grads.size(0), output_grads.size(1), output_weights.size(1))
# Output Linear GEMM - WGRAD
# Input1: (data grads) [seql_q*seqs, embed_dim=heads*head_dim] transpose(0,1)
# Input2: (activations) [seql_q*seqs, embed_dim ]
# Output: [ seql_q, seqs, embed_dim ]
# GEMM: ( embed_dim x seql_q*seqs ) x ( seql_q*seqs x embed_dim ) = ( embed_dim x embed_dim )
output_weight_grads = torch.mm(output_grads.view(output_grads.size(0) * output_grads.size(1), output_grads.size(2)).transpose(0,1),
matmul2_results.view(matmul2_results.size(0) * matmul2_results.size(1), matmul2_results.size(2)))
output_lin_grads = output_lin_grads.view(output_grads.size(0), output_grads.size(1)*heads_t[0], head_dim).transpose(0,1)
if use_biases_t[0]:
output_bias_grads = torch.sum(output_grads.view(output_grads.size(0) * output_grads.size(1), output_grads.size(2)), 0)
else:
output_bias_grads = None
# Matmul2 - DGRAD1
# Input1: (data grads) [seql_q, seqs*heads, head_dim] transpose(0,1)
# Input2: (activations) [seql_k, seqs*heads, head_dim] transpose(0,1).transpose(1,2)
# Output: [seqs*heads, seql_q, seql_k]
# GEMM: Per batch: ( seql_q x head_dim ) x ( head_dim x seql_k ) = ( seql_q x seql_k )
matmul2_dgrad1 = torch.bmm(output_lin_grads, values.transpose(0,1).transpose(1,2))
# Matmul2 - DGRAD2
# Input1: (data grads) [seql_q, seqs*heads, head_dim] transpose(0,1)
# Input2: (activations) [seql_k, seqs*heads, head_dim] transpose(0,1).transpose(1,2)
# Output: [seqs*heads, seql_q, seql_k]
# GEMM: Per batch: ( seql_q x head_dim ) x ( head_dim x seql_k ) = ( seql_q x seql_k )
values_grads = torch.bmm(dropout_results.transpose(1,2), output_lin_grads, out=values_grads.transpose(0,1))
# Mask and Scaling for Dropout (not a publically documented op)
dropout_grads = torch._masked_scale(matmul2_dgrad1, dropout_mask, dropout_prob_t[0])
# Softmax Grad (not a publically documented op)
softmax_grads = torch._softmax_backward_data(dropout_grads, softmax_results, -1, softmax_results)
# Matmul1 - DGRAD1
# Input1: (data grads) [seqs*heads, seql_q, seql_k]
# Input2: (activations) [seql_k, seqs*heads, head_dim] transpose(0,1)
# Output: [seqs*heads, seql_q, head_dim] transpose(0,1)
# GEMM: Per batch: ( seql_q x seql_k ) x ( seql_k x head_dim ) = ( seql_q x head_dim )
queries_grads = torch.baddbmm(queries_grads.transpose(0,1), softmax_grads, keys.transpose(0,1),
out=queries_grads.transpose(0,1), beta=0.0, alpha=scale_t[0])
# Matmul1 - DGRAD2
# Input1: (data grads) [seqs*heads, seql_q, seql_k] transpose(1,2)
# Input2: (activations) [seql_q, seqs*heads, head_dim] transpose(0,1)
# Output: [seqs*heads, seql_k, head_dim] transpose(0,1)
# GEMM: Per batch: ( seql_k x seql_q ) x ( seql_q x head_dim ) = ( seql_k x head_dim )
keys_grads = torch.baddbmm(keys_grads.transpose(0,1), softmax_grads.transpose(1,2), queries.transpose(0,1),
out=keys_grads.transpose(0,1), beta=0.0, alpha=scale_t[0])
# Input Q Linear GEMM - DGRAD
# input1: (data grads) [seql_q, seqs, embed_dim(1024)]
# input2: (weights) [embed_dim (1024), embed_dim (1024)]
# output: [seql_q, seqs, embed_dim]
# GEMM: ( (seql_q*seqs) x embed_dim ) x ( embed_dim x embed_dim ) = (seql_q*seqs x embed_dim)
queries_grads = queries_grads.transpose(0,1).view(inputs_q.size(0)*inputs_q.size(1), heads_t[0]*head_dim)
input_q_grads = torch.mm(queries_grads, input_weights_q)
input_q_grads = input_q_grads.view(inputs_q.size(0), inputs_q.size(1), inputs_q.size(2))
# Input KV Linear GEMM - DGRAD
# input1: (data grads) [seql_k, seqs, 2*embed_dim(2048)]
# input2: (weights) [embed_dim*2 (2048), embed_dim (1024)]
# output: [seql_k, seqs, embed_dim]
# GEMM: ( (seql_k*seqs) x 2*embed_dim ) x ( 2*embed_dim x embed_dim ) = (seql_k*seqs x embed_dim)
input_lin_kv_results_grads = input_lin_kv_results_grads.view(inputs_kv.size(0)*inputs_kv.size(1), heads_t[0]*2*head_dim)
input_kv_grads = torch.mm(input_lin_kv_results_grads, input_weights_kv)
input_kv_grads = input_kv_grads.view(inputs_kv.size(0), inputs_kv.size(1), inputs_kv.size(2))
# Input Q Linear GEMM - WGRAD
# input1: (data grads) [seql_q*seqs, embed_dim(1024)]
# input2: (activations) [seql_q*seqs, embed_dim(1024)]
# output: [embed_dim, embed_dim]
# GEMM: ( embed_dim x seql_q*seqs ) x ( seql_q*seqs x embed_dim ) = (embed_dim x embed_dim)
input_weight_q_grads = torch.mm(queries_grads.transpose(0,1), inputs_q.view(inputs_q.size(0)*inputs_q.size(1), inputs_q.size(2)))
# Input KV Linear GEMM - WGRAD
# input1: (data grads) [seql_k*seqs, 2*embed_dim(2048)]
# input2: (activations) [seql_k*seqs, embed_dim(1024)]
# output: [2*embed_dim, embed_dim]
# GEMM: ( 2*embed_dim x seql_k*seqs ) x ( seql_k*seqs x embed_dim ) = (2*embed_dim x embed_dim)
input_weight_kv_grads = torch.mm(input_lin_kv_results_grads.transpose(0,1), inputs_kv.view(inputs_kv.size(0)*inputs_kv.size(1), inputs_kv.size(2)))
if use_biases_t[0]:
input_bias_grads_q = torch.sum(queries_grads, 0)
input_bias_grads_kv = torch.sum(input_lin_kv_results_grads, 0)
else:
input_bias_grads_q = None
input_bias_grads_kv = None
return None, None, None, None, \
input_q_grads, input_kv_grads, \
input_weight_q_grads, input_weight_kv_grads, output_weight_grads, \
input_bias_grads_q, input_bias_grads_kv, output_bias_grads, \
None, None
encdec_attn_func = EncdecAttnFunc.apply
This diff is collapsed.
import torch
import fast_self_multihead_attn
class FastSelfAttnFunc(torch.autograd.Function) :
@staticmethod
def forward(ctx, use_time_mask, is_training, heads, inputs, input_weights, output_weights, pad_mask, dropout_prob):
heads_t = torch.tensor([heads])
dropout_prob_t = torch.tensor([dropout_prob])
null_tensor = torch.tensor([])
use_mask = (pad_mask is not None)
input_lin_results, \
softmax_results, \
dropout_results, \
dropout_mask, \
matmul2_results, \
outputs = \
fast_self_multihead_attn.forward( \
use_mask, \
use_time_mask, \
is_training, \
heads, \
inputs, \
input_weights, \
output_weights, \
pad_mask if use_mask else null_tensor, \
dropout_prob)
ctx.save_for_backward(heads_t, \
matmul2_results, \
dropout_results, \
softmax_results, \
input_lin_results, \
inputs, \
input_weights, \
output_weights, \
dropout_mask, \
dropout_prob_t)
return outputs.detach()
@staticmethod
def backward(ctx, output_grads):
heads_t, \
matmul2_results, \
dropout_results, \
softmax_results, \
input_lin_results, \
inputs, \
input_weights, \
output_weights, \
dropout_mask, \
dropout_prob_t = ctx.saved_tensors
input_grads, \
input_weight_grads, \
output_weight_grads = \
fast_self_multihead_attn.backward( \
heads_t[0], \
output_grads, \
matmul2_results, \
dropout_results, \
softmax_results, \
input_lin_results, \
inputs, \
input_weights, \
output_weights, \
dropout_mask, \
dropout_prob_t[0])
return None, None, None, input_grads, input_weight_grads, output_weight_grads, None, None
fast_self_attn_func = FastSelfAttnFunc.apply
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment