Unverified Commit 365fdc18 authored by Masaki Kozuki's avatar Masaki Kozuki Committed by GitHub
Browse files

transformer utils (#1181)


Co-authored-by: default avatarPiotr Bialecki <pbialecki@nvidia.com>
Co-authored-by: default avatarEddie Yan <eddiey@nvidia.com>
Co-authored-by: default avatarRishi Puri <riship@nvidia.com>
Co-authored-by: default avatarSangkug Lym <slym@nvidia.com>
parent bdac244e
# coding=utf-8
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Megatron arguments."""
import argparse
import os
import torch
def parse_args(extra_args_provider=None, defaults={},
ignore_unknown_args=False):
"""Parse all arguments."""
parser = argparse.ArgumentParser(description='Megatron-LM Arguments',
allow_abbrev=False)
# Standard arguments.
parser = _add_network_size_args(parser)
parser = _add_regularization_args(parser)
parser = _add_training_args(parser)
parser = _add_initialization_args(parser)
parser = _add_learning_rate_args(parser)
parser = _add_checkpointing_args(parser)
parser = _add_mixed_precision_args(parser)
parser = _add_distributed_args(parser)
parser = _add_validation_args(parser)
parser = _add_data_args(parser)
parser = _add_autoresume_args(parser)
parser = _add_biencoder_args(parser)
parser = _add_vit_args(parser)
parser = _add_logging_args(parser)
# Custom arguments.
if extra_args_provider is not None:
parser = extra_args_provider(parser)
# Parse.
if ignore_unknown_args:
args, _ = parser.parse_known_args()
else:
args = parser.parse_args()
# Distributed args.
args.rank = int(os.getenv('RANK', '0'))
args.world_size = int(os.getenv("WORLD_SIZE", '1'))
# Tensor model parallel size.
args.tensor_model_parallel_size = min(
args.tensor_model_parallel_size, args.world_size)
assert args.world_size % args.tensor_model_parallel_size == 0, 'world size'\
' ({}) is not divisible by tensor model parallel size ({})'.format(
args.world_size, args.tensor_model_parallel_size)
# Pipeline model parallel size.
args.pipeline_model_parallel_size = min(
args.pipeline_model_parallel_size,
(args.world_size // args.tensor_model_parallel_size))
# Checks.
model_parallel_size = args.pipeline_model_parallel_size * \
args.tensor_model_parallel_size
assert args.world_size % model_parallel_size == 0, 'world size is not'\
' divisible by tensor parallel size ({}) times pipeline parallel ' \
'size ({})'.format(args.world_size, args.tensor_model_parallel_size,
args.pipeline_model_parallel_size)
args.data_parallel_size = args.world_size // model_parallel_size
if args.rank == 0:
print('using world size: {}, data-parallel-size: {}, '
'tensor-model-parallel size: {}, '
'pipeline-model-parallel size: {} '.format(
args.world_size, args.data_parallel_size,
args.tensor_model_parallel_size,
args.pipeline_model_parallel_size), flush=True)
# Deprecated arguments
assert args.batch_size is None, '--batch-size argument is no longer ' \
'valid, use --micro-batch-size instead'
del args.batch_size
assert args.warmup is None, '--warmup argument is no longer valid, use ' \
'--lr-warmup-fraction instead'
del args.warmup
assert args.model_parallel_size is None, '--model-parallel-size is no ' \
'longer valid, use --tensor-model-parallel-size instead'
del args.model_parallel_size
# Set input defaults.
for key in defaults:
# For default to be valid, it should not be provided in the
# arguments that are passed to the program. We check this by
# ensuring the arg is set to None.
if getattr(args, key) is not None:
if args.rank == 0:
print('WARNING: overriding default arguments for {key}:{v} \
with {key}:{v2}'.format(key=key, v=defaults[key],
v2=getattr(args, key)),
flush=True)
else:
setattr(args, key, defaults[key])
# Batch size.
assert args.micro_batch_size is not None
assert args.micro_batch_size > 0
if args.global_batch_size is None:
args.global_batch_size = args.micro_batch_size * args.data_parallel_size
if args.rank == 0:
print('setting global batch size to {}'.format(
args.global_batch_size), flush=True)
assert args.global_batch_size > 0
if args.num_layers_per_virtual_pipeline_stage is not None:
assert args.pipeline_model_parallel_size > 2, \
'pipeline-model-parallel size should be greater than 2 with ' \
'interleaved schedule'
assert args.num_layers % args.num_layers_per_virtual_pipeline_stage == 0, \
'number of layers is not divisible by number of layers per virtual ' \
'pipeline stage'
args.virtual_pipeline_model_parallel_size = \
(args.num_layers // args.pipeline_model_parallel_size) // \
args.num_layers_per_virtual_pipeline_stage
else:
args.virtual_pipeline_model_parallel_size = None
# Parameters dtype.
args.params_dtype = torch.float
if args.fp16:
assert not args.bf16
args.params_dtype = torch.half
if args.bf16:
assert not args.fp16
args.params_dtype = torch.bfloat16
# bfloat16 requires gradient accumulation and all-reduce to
# be done in fp32.
if not args.accumulate_allreduce_grads_in_fp32:
args.accumulate_allreduce_grads_in_fp32 = True
if args.rank == 0:
print('accumulate and all-reduce gradients in fp32 for '
'bfloat16 data type.', flush=True)
if args.rank == 0:
print('using {} for parameters ...'.format(args.params_dtype),
flush=True)
# If we do accumulation and all-reduces in fp32, we need to have
# local DDP and we should set the use-contiguous-buffers-in-ddp.
if args.accumulate_allreduce_grads_in_fp32:
assert args.DDP_impl == 'local'
args.use_contiguous_buffers_in_ddp = True
# If we use a contiguous buffer to hold main grads, we need to have
# local DDP.
if args.use_contiguous_buffers_in_ddp:
assert args.DDP_impl == 'local'
if args.dataloader_type is None:
args.dataloader_type = 'single'
# Consumed tokens.
args.consumed_train_samples = 0
args.consumed_valid_samples = 0
# Iteration-based training.
if args.train_iters:
# If we use iteration-based training, make sure the
# sample-based options are off.
assert args.train_samples is None, \
'expected iteration-based training'
assert args.lr_decay_samples is None, \
'expected iteration-based learning rate decay'
assert args.lr_warmup_samples == 0, \
'expected iteration-based learning rate warmup'
assert args.rampup_batch_size is None, \
'expected no batch-size rampup for iteration-based training'
if args.lr_warmup_fraction is not None:
assert args.lr_warmup_iters == 0, \
'can only specify one of lr-warmup-fraction and lr-warmup-iters'
# Sample-based training.
if args.train_samples:
# If we use sample-based training, make sure the
# iteration-based options are off.
assert args.train_iters is None, \
'expected sample-based training'
assert args.lr_decay_iters is None, \
'expected sample-based learning rate decay'
assert args.lr_warmup_iters == 0, \
'expected sample-based learnig rate warmup'
if args.lr_warmup_fraction is not None:
assert args.lr_warmup_samples == 0, \
'can only specify one of lr-warmup-fraction ' \
'and lr-warmup-samples'
# Check required arguments.
required_args = ['num_layers', 'hidden_size', 'num_attention_heads',
'max_position_embeddings']
for req_arg in required_args:
_check_arg_is_not_none(args, req_arg)
# Checks.
if args.ffn_hidden_size is None:
args.ffn_hidden_size = 4 * args.hidden_size
if args.kv_channels is None:
assert args.hidden_size % args.num_attention_heads == 0
args.kv_channels = args.hidden_size // args.num_attention_heads
if args.seq_length is not None:
assert args.encoder_seq_length is None
args.encoder_seq_length = args.seq_length
else:
assert args.encoder_seq_length is not None
args.seq_length = args.encoder_seq_length
if args.seq_length is not None:
assert args.max_position_embeddings >= args.seq_length
if args.decoder_seq_length is not None:
assert args.max_position_embeddings >= args.decoder_seq_length
if args.lr is not None:
assert args.min_lr <= args.lr
if args.save is not None:
assert args.save_interval is not None
# Mixed precision checks.
if args.fp16_lm_cross_entropy:
assert args.fp16, 'lm cross entropy in fp16 only support in fp16 mode.'
if args.fp32_residual_connection:
assert args.fp16 or args.bf16, \
'residual connection in fp32 only supported when using fp16 or bf16.'
# Activation checkpointing.
if args.distribute_checkpointed_activations:
assert args.checkpoint_activations, \
'for distribute-checkpointed-activations to work you '\
'need to enable checkpoint-activations'
_print_args(args)
return args
def _print_args(args):
"""Print arguments."""
if args.rank == 0:
print('------------------------ arguments ------------------------',
flush=True)
str_list = []
for arg in vars(args):
dots = '.' * (48 - len(arg))
str_list.append(' {} {} {}'.format(arg, dots, getattr(args, arg)))
for arg in sorted(str_list, key=lambda x: x.lower()):
print(arg, flush=True)
print('-------------------- end of arguments ---------------------',
flush=True)
def _check_arg_is_not_none(args, arg):
assert getattr(args, arg) is not None, '{} argument is None'.format(arg)
def _add_network_size_args(parser):
group = parser.add_argument_group(title='network size')
group.add_argument('--num-layers', type=int, default=None,
help='Number of transformer layers.')
group.add_argument('--hidden-size', type=int, default=None,
help='Tansformer hidden size.')
group.add_argument('--ffn-hidden-size', type=int, default=None,
help='Transformer Feed-Forward Network hidden size. '
'This is set to 4*hidden-size if not provided')
group.add_argument('--num-attention-heads', type=int, default=None,
help='Number of transformer attention heads.')
group.add_argument('--kv-channels', type=int, default=None,
help='Projection weights dimension in multi-head '
'attention. This is set to '
' args.hidden_size // args.num_attention_heads '
'if not provided.')
group.add_argument('--max-position-embeddings', type=int, default=None,
help='Maximum number of position embeddings to use. '
'This is the size of position embedding.')
group.add_argument('--make-vocab-size-divisible-by', type=int, default=128,
help='Pad the vocab size to be divisible by this value.'
'This is added for computational efficieny reasons.')
group.add_argument('--layernorm-epsilon', type=float, default=1e-5,
help='Layer norm epsilon.')
group.add_argument('--apply-residual-connection-post-layernorm',
action='store_true',
help='If set, use original BERT residula connection '
'ordering.')
group.add_argument('--openai-gelu', action='store_true',
help='Use OpenAIs GeLU implementation. This option'
'should not be used unless for backward compatibility'
'reasons.')
group.add_argument('--onnx-safe', type=bool, required=False,
help='Use workarounds for known problems with '
'Torch ONNX exporter')
group.add_argument('--bert-no-binary-head', action='store_false',
help='Disable BERT binary head.',
dest='bert_binary_head')
return parser
def _add_logging_args(parser):
group = parser.add_argument_group(title='logging')
group.add_argument('--log-params-norm', action='store_true',
help='If set, calculate and log parameters norm.')
group.add_argument('--log-num-zeros-in-grad', action='store_true',
help='If set, calculate and log the number of zeros in gradient.')
group.add_argument('--tensorboard-log-interval', type=int, default=1,
help='Report to tensorboard interval.')
group.add_argument('--tensorboard-queue-size', type=int, default=1000,
help='Size of the tensorboard queue for pending events '
'and summaries before one of the ‘add’ calls forces a '
'flush to disk.')
group.add_argument('--log-timers-to-tensorboard', action='store_true',
help='If set, write timers to tensorboard.')
group.add_argument('--log-batch-size-to-tensorboard', action='store_true',
help='If set, write batch-size to tensorboard.')
group.add_argument('--no-log-learnig-rate-to-tensorboard',
action='store_false',
help='Disable learning rate logging to tensorboard.',
dest='log_learning_rate_to_tensorboard')
group.add_argument('--no-log-loss-scale-to-tensorboard',
action='store_false',
help='Disable loss-scale logging to tensorboard.',
dest='log_loss_scale_to_tensorboard')
group.add_argument('--log-validation-ppl-to-tensorboard',
action='store_true',
help='If set, write validation perplexity to '
'tensorboard.')
group.add_argument('--log-memory-to-tensorboard',
action='store_true',
help='Enable memory logging to tensorboard.')
return parser
def _add_regularization_args(parser):
group = parser.add_argument_group(title='regularization')
group.add_argument('--attention-dropout', type=float, default=0.1,
help='Post attention dropout probability.')
group.add_argument('--hidden-dropout', type=float, default=0.1,
help='Dropout probability for hidden state transformer.')
group.add_argument('--weight-decay', type=float, default=0.01,
help='Weight decay coefficient for L2 regularization.')
group.add_argument('--clip-grad', type=float, default=1.0,
help='Gradient clipping based on global L2 norm.')
group.add_argument('--adam-beta1', type=float, default=0.9,
help='First coefficient for computing running averages '
'of gradient and its square')
group.add_argument('--adam-beta2', type=float, default=0.999,
help='Second coefficient for computing running averages '
'of gradient and its square')
group.add_argument('--adam-eps', type=float, default=1e-08,
help='Term added to the denominator to improve'
'numerical stability')
group.add_argument('--sgd-momentum', type=float, default=0.9,
help='Momentum factor for sgd')
return parser
def _add_training_args(parser):
group = parser.add_argument_group(title='training')
group.add_argument('--micro-batch-size', type=int, default=None,
help='Batch size per model instance (local batch size). '
'Global batch size is local batch size times data '
'parallel size times number of micro batches.')
group.add_argument('--batch-size', type=int, default=None,
help='Old batch size parameter, do not use. '
'Use --micro-batch-size instead')
group.add_argument('--global-batch-size', type=int, default=None,
help='Training batch size. If set, it should be a '
'multiple of micro-batch-size times data-parallel-size. '
'If this value is None, then '
'use micro-batch-size * data-parallel-size as the '
'global batch size. This choice will result in 1 for '
'number of micro-batches.')
group.add_argument('--rampup-batch-size', nargs='*', default=None,
help='Batch size ramp up with the following values:'
' --rampup-batch-size <start batch size> '
' <batch size incerement> '
' <ramp-up samples> '
'For example:'
' --rampup-batch-size 16 8 300000 \ '
' --global-batch-size 1024'
'will start with global batch size 16 and over '
' (1024 - 16) / 8 = 126 intervals will increase'
'the batch size linearly to 1024. In each interval'
'we will use approximately 300000 / 126 = 2380 samples.')
group.add_argument('--checkpoint-activations', action='store_true',
help='Checkpoint activation to allow for training '
'with larger models, sequences, and batch sizes.')
group.add_argument('--distribute-checkpointed-activations',
action='store_true',
help='If set, distribute checkpointed activations '
'across model parallel group.')
group.add_argument('--checkpoint-num-layers', type=int, default=1,
help='chunk size (number of layers) for checkpointing.')
group.add_argument('--train-iters', type=int, default=None,
help='Total number of iterations to train over all '
'training runs. Note that either train-iters or '
'train-samples should be provided.')
group.add_argument('--train-samples', type=int, default=None,
help='Total number of samples to train over all '
'training runs. Note that either train-iters or '
'train-samples should be provided.')
group.add_argument('--log-interval', type=int, default=100,
help='Report loss and timing interval.')
group.add_argument('--exit-interval', type=int, default=None,
help='Exit the program after the iteration is divisible '
'by this value.')
group.add_argument('--exit-duration-in-mins', type=int, default=None,
help='Exit the program after this many minutes.')
group.add_argument('--tensorboard-dir', type=str, default=None,
help='Write TensorBoard logs to this directory.')
group.add_argument('--no-masked-softmax-fusion',
action='store_false',
help='Disable fusion of query_key_value scaling, '
'masking, and softmax.',
dest='masked_softmax_fusion')
group.add_argument('--no-bias-gelu-fusion', action='store_false',
help='Disable bias and gelu fusion.',
dest='bias_gelu_fusion')
group.add_argument('--no-bias-dropout-fusion', action='store_false',
help='Disable bias and dropout fusion.',
dest='bias_dropout_fusion')
group.add_argument('--optimizer', type=str, default='adam',
choices=['adam', 'sgd'],
help='Optimizer function')
group.add_argument('--dataloader-type', type=str, default=None,
choices=['single', 'cyclic'],
help='Single pass vs multiple pass data loader')
return parser
def _add_initialization_args(parser):
group = parser.add_argument_group(title='initialization')
group.add_argument('--seed', type=int, default=1234,
help='Random seed used for python, numpy, '
'pytorch, and cuda.')
group.add_argument('--init-method-std', type=float, default=0.02,
help='Standard deviation of the zero mean normal '
'distribution used for weight initialization.')
group.add_argument('--init-method-xavier-uniform', action='store_true',
help='Enable Xavier uniform parameter initialization')
return parser
def _add_learning_rate_args(parser):
group = parser.add_argument_group(title='learning rate')
group.add_argument('--lr', type=float, default=None,
help='Initial learning rate. Depending on decay style '
'and initial warmup, the learing rate at each '
'iteration would be different.')
group.add_argument('--lr-decay-style', type=str, default='linear',
choices=['constant', 'linear', 'cosine'],
help='Learning rate decay function.')
group.add_argument('--lr-decay-iters', type=int, default=None,
help='number of iterations to decay learning rate over,'
' If None defaults to `--train-iters`')
group.add_argument('--lr-decay-samples', type=int, default=None,
help='number of samples to decay learning rate over,'
' If None defaults to `--train-samples`')
group.add_argument('--lr-warmup-fraction', type=float, default=None,
help='fraction of lr-warmup-(iters/samples) to use '
'for warmup (as a float)')
group.add_argument('--lr-warmup-iters', type=int, default=0,
help='number of iterations to linearly warmup '
'learning rate over.')
group.add_argument('--lr-warmup-samples', type=int, default=0,
help='number of samples to linearly warmup '
'learning rate over.')
group.add_argument('--warmup', type=int, default=None,
help='Old lr warmup argument, do not use. Use one of the'
'--lr-warmup-* arguments above')
group.add_argument('--min-lr', type=float, default=0.0,
help='Minumum value for learning rate. The scheduler'
'clip values below this threshold.')
group.add_argument('--override-lr-scheduler', action='store_true',
help='Reset the values of the scheduler (learning rate,'
'warmup iterations, minimum learning rate, maximum '
'number of iterations, and decay style from input '
'arguments and ignore values from checkpoints. Note'
'that all the above values will be reset.')
group.add_argument('--use-checkpoint-lr-scheduler', action='store_true',
help='Use checkpoint to set the values of the scheduler '
'(learning rate, warmup iterations, minimum learning '
'rate, maximum number of iterations, and decay style '
'from checkpoint and ignore input arguments.')
return parser
def _add_checkpointing_args(parser):
group = parser.add_argument_group(title='checkpointing')
group.add_argument('--save', type=str, default=None,
help='Output directory to save checkpoints to.')
group.add_argument('--save-interval', type=int, default=None,
help='Number of iterations between checkpoint saves.')
group.add_argument('--no-save-optim', action='store_true', default=None,
help='Do not save current optimizer.')
group.add_argument('--no-save-rng', action='store_true', default=None,
help='Do not save current rng state.')
group.add_argument('--load', type=str, default=None,
help='Directory containing a model checkpoint.')
group.add_argument('--no-load-optim', action='store_true', default=None,
help='Do not load optimizer when loading checkpoint.')
group.add_argument('--no-load-rng', action='store_true', default=None,
help='Do not load rng state when loading checkpoint.')
group.add_argument('--finetune', action='store_true',
help='Load model for finetuning. Do not load optimizer '
'or rng state from checkpoint and set iteration to 0. '
'Assumed when loading a release checkpoint.')
return parser
def _add_mixed_precision_args(parser):
group = parser.add_argument_group(title='mixed precision')
group.add_argument('--fp16', action='store_true',
help='Run model in fp16 mode.')
group.add_argument('--bf16', action='store_true',
help='Run model in bfloat16 mode.')
group.add_argument('--loss-scale', type=float, default=None,
help='Static loss scaling, positive power of 2 '
'values can improve fp16 convergence. If None, dynamic'
'loss scaling is used.')
group.add_argument('--initial-loss-scale', type=float, default=2**32,
help='Initial loss-scale for dynamic loss scaling.')
group.add_argument('--min-loss-scale', type=float, default=1.0,
help='Minimum loss scale for dynamic loss scale.')
group.add_argument('--loss-scale-window', type=float, default=1000,
help='Window over which to raise/lower dynamic scale.')
group.add_argument('--hysteresis', type=int, default=2,
help='hysteresis for dynamic loss scaling')
group.add_argument('--fp32-residual-connection', action='store_true',
help='Move residual connections to fp32.')
group.add_argument('--no-query-key-layer-scaling', action='store_false',
help='Do not scale Q * K^T by 1 / layer-number.',
dest='apply_query_key_layer_scaling')
group.add_argument('--attention-softmax-in-fp32', action='store_true',
help='Run attention masking and softmax in fp32. '
'This flag is ignored unless '
'--no-query-key-layer-scaling is specified.')
group.add_argument('--accumulate-allreduce-grads-in-fp32',
action='store_true',
help='Gradient accumulation and all-reduce in fp32.')
group.add_argument('--fp16-lm-cross-entropy', action='store_true',
help='Move the cross entropy unreduced loss calculation'
'for lm head to fp16.')
return parser
def _add_distributed_args(parser):
group = parser.add_argument_group(title='distributed')
group.add_argument('--tensor-model-parallel-size', type=int, default=1,
help='Degree of tensor model parallelism.')
group.add_argument('--pipeline-model-parallel-size', type=int, default=1,
help='Degree of pipeline model parallelism.')
group.add_argument('--model-parallel-size', type=int, default=None,
help='Old model parallel argument, do not use. Use '
'--tensor-model-parallel-size instead.')
group.add_argument('--num-layers-per-virtual-pipeline-stage', type=int, default=None,
help='Number of layers per virtual pipeline stage')
group.add_argument('--distributed-backend', default='nccl',
choices=['nccl', 'gloo'],
help='Which backend to use for distributed training.')
group.add_argument('--DDP-impl', default='local',
choices=['local', 'torch'],
help='which DistributedDataParallel implementation '
'to use.')
group.add_argument('--use-contiguous-buffers-in-ddp', action='store_true',
help='If set, use contiguous buffer in DDP. Note that '
'this option only works woth local DDP.' )
group.add_argument('--no-scatter-gather-tensors-in-pipeline', action='store_false',
help='Use scatter/gather to optimize communication of tensors in pipeline',
dest='scatter_gather_tensors_in_pipeline')
group.add_argument('--local_rank', type=int, default=None,
help='local rank passed from distributed launcher.')
group.add_argument('--lazy-mpu-init', type=bool, required=False,
help='If set to True, initialize_megatron() '
'skips DDP initialization and returns function to '
'complete it instead.Also turns on '
'--use-cpu-initialization flag. This is for '
'external DDP manager.' )
group.add_argument('--use-cpu-initialization', action='store_true',
default=None, help='If set, affine parallel weights '
'initialization uses CPU' )
group.add_argument('--empty-unused-memory-level', default=0, type=int,
choices=[0, 1, 2],
help='Call torch.cuda.empty_cache() each iteration '
'(training and eval), to reduce fragmentation.'
'0=off, 1=moderate, 2=aggressive.')
return parser
def _add_validation_args(parser):
group = parser.add_argument_group(title='validation')
group.add_argument('--eval-iters', type=int, default=100,
help='Number of iterations to run for evaluation'
'validation/test for.')
group.add_argument('--eval-interval', type=int, default=1000,
help='Interval between running evaluation on '
'validation set.')
return parser
def _add_data_args(parser):
group = parser.add_argument_group(title='data and dataloader')
group.add_argument('--data-path', nargs='*', default=None,
help='Path to the training dataset. Accepted format:'
'1) a single data path, 2) multiple datasets in the'
'form: dataset1-weight dataset1-path dataset2-weight '
'dataset2-path ...')
group.add_argument('--split', type=str, default='969, 30, 1',
help='Comma-separated list of proportions for training,'
' validation, and test split. For example the split '
'`90,5,5` will use 90%% of data for training, 5%% for '
'validation and 5%% for test.')
group.add_argument('--vocab-file', type=str, default=None,
help='Path to the vocab file.')
group.add_argument('--merge-file', type=str, default=None,
help='Path to the BPE merge file.')
group.add_argument('--vocab-extra-ids', type=int, default=0,
help='Number of additional vocabulary tokens. '
'They are used for span masking in the T5 model')
group.add_argument('--seq-length', type=int, default=None,
help='Maximum sequence length to process.')
group.add_argument('--encoder-seq-length', type=int, default=None,
help='Maximum encoder sequence length to process.'
'This should be exclusive of --seq-length')
group.add_argument('--decoder-seq-length', type=int, default=None,
help="Maximum decoder sequence length to process.")
group.add_argument('--retriever-seq-length', type=int, default=256,
help='Maximum sequence length for the biencoder model '
' for retriever')
group.add_argument('--sample-rate', type=float, default=1.0,
help='sample rate for training data. Supposed to be 0 '
' < sample_rate < 1')
group.add_argument('--mask-prob', type=float, default=0.15,
help='Probability of replacing a token with mask.')
group.add_argument('--short-seq-prob', type=float, default=0.1,
help='Probability of producing a short sequence.')
group.add_argument('--mmap-warmup', action='store_true',
help='Warm up mmap files.')
group.add_argument('--num-workers', type=int, default=2,
help="Dataloader number of workers.")
group.add_argument('--tokenizer-type', type=str,
default=None,
choices=['BertWordPieceLowerCase',
'BertWordPieceCase',
'GPT2BPETokenizer'],
help='What type of tokenizer to use.')
group.add_argument('--data-impl', type=str, default='infer',
choices=['lazy', 'cached', 'mmap', 'infer'],
help='Implementation of indexed datasets.')
group.add_argument('--reset-position-ids', action='store_true',
help='Reset posistion ids after end-of-document token.')
group.add_argument('--reset-attention-mask', action='store_true',
help='Reset self attention maske after '
'end-of-document token.')
group.add_argument('--eod-mask-loss', action='store_true',
help='Mask loss for the end of document tokens.')
return parser
def _add_autoresume_args(parser):
group = parser.add_argument_group(title='autoresume')
group.add_argument('--adlr-autoresume', action='store_true',
help='Enable autoresume on adlr cluster.')
group.add_argument('--adlr-autoresume-interval', type=int, default=1000,
help='Intervals over which check for autoresume'
'termination signal')
return parser
def _add_biencoder_args(parser):
group = parser.add_argument_group(title='biencoder')
# network size
group.add_argument('--ict-head-size', type=int, default=None,
help='Size of block embeddings to be used in ICT and '
'REALM (paper default: 128)')
group.add_argument('--biencoder-projection-dim', type=int, default=0,
help='Size of projection head used in biencoder (paper'
' default: 128)')
group.add_argument('--biencoder-shared-query-context-model', action='store_true',
help='Whether to share the parameters of the query '
'and context models or not')
# checkpointing
group.add_argument('--ict-load', type=str, default=None,
help='Directory containing an ICTBertModel checkpoint')
group.add_argument('--bert-load', type=str, default=None,
help='Directory containing an BertModel checkpoint '
'(needed to start ICT and REALM)')
# data
group.add_argument('--titles-data-path', type=str, default=None,
help='Path to titles dataset used for ICT')
group.add_argument('--query-in-block-prob', type=float, default=0.1,
help='Probability of keeping query in block for '
'ICT dataset')
group.add_argument('--use-one-sent-docs', action='store_true',
help='Whether to use one sentence documents in ICT')
group.add_argument('--evidence-data-path', type=str, default=None,
help='Path to Wikipedia Evidence frm DPR paper')
# training
group.add_argument('--retriever-report-topk-accuracies', nargs='+', type=int,
default=[], help="Which top-k accuracies to report "
"(e.g. '1 5 20')")
group.add_argument('--retriever-score-scaling', action='store_true',
help='Whether to scale retriever scores by inverse '
'square root of hidden size')
# faiss index
group.add_argument('--block-data-path', type=str, default=None,
help='Where to save/load BlockData to/from')
group.add_argument('--embedding-path', type=str, default=None,
help='Where to save/load Open-Retrieval Embedding'
' data to/from')
# indexer
group.add_argument('--indexer-batch-size', type=int, default=128,
help='How large of batches to use when doing indexing '
'jobs')
group.add_argument('--indexer-log-interval', type=int, default=1000,
help='After how many batches should the indexer '
'report progress')
return parser
def _add_vit_args(parser):
group = parser.add_argument_group(title="vit")
group.add_argument('--num-classes', type=int, default=1000,
help='num of classes in vision classificaiton task')
group.add_argument('--img-dim', type=int, default=224,
help='Image size for vision classification task')
group.add_argument('--num-channels', type=int, default=3,
help='Number of channels in input image data')
group.add_argument('--patch-dim', type=int, default=16,
help='patch dimension used in vit')
return parser
# coding=utf-8
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import random
import numpy
import torch
from apex import transformer
from apex.transformer.tensor_parallel.tests import global_vars
TEST_SUCCESS_MESSAGE = ">> passed the test :-)"
class IdentityLayer(torch.nn.Module):
def __init__(self, size, scale=1.0):
super(IdentityLayer, self).__init__()
self.weight = torch.nn.Parameter(scale * torch.randn(size))
def forward(self):
return self.weight
def set_random_seed(seed):
"""Set random seed for reproducibility."""
random.seed(seed)
numpy.random.seed(seed)
torch.manual_seed(seed)
transformer.tensor_parallel.model_parallel_cuda_manual_seed(seed)
def initialize_distributed(backend='nccl'):
"""Initialize torch.distributed."""
# Get local rank in case it is provided.
# parser = argparse.ArgumentParser()
# parser.add_argument('--local_rank', type=int, default=None,
# help='local rank passed from distributed launcher')
# args = parser.parse_args()
args = global_vars.get_args()
local_rank = args.local_rank
# Get rank and world size.
rank = int(os.getenv('RANK', '0'))
world_size = int(os.getenv("WORLD_SIZE", '1'))
print('> initializing torch.distributed with local rank: {}, '
'rank: {}, world size: {}'.format(local_rank, rank, world_size))
# Set the device id.
device = rank % torch.cuda.device_count()
if local_rank is not None:
device = local_rank
torch.cuda.set_device(device)
# Call the init process.
init_method = 'tcp://'
master_ip = os.getenv('MASTER_ADDR', 'localhost')
master_port = os.getenv('MASTER_PORT', '6000')
init_method += master_ip + ':' + master_port
torch.distributed.init_process_group(
backend=backend,
world_size=world_size,
rank=rank,
init_method=init_method)
def print_separator(message):
torch.distributed.barrier()
filler_len = (78 - len(message)) // 2
filler = '-' * filler_len
string = '\n' + filler + ' {} '.format(message) + filler
if torch.distributed.get_rank() == 0:
print(string, flush=True)
torch.distributed.barrier()
# coding=utf-8
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Megatron global variables."""
import os
import sys
import time
import torch
from apex.transformer.tensor_parallel.microbatches import build_num_microbatches_calculator
from apex.transformer.tensor_parallel.tests.arguments import parse_args
_GLOBAL_ARGS = None
_GLOBAL_NUM_MICROBATCHES_CALCULATOR = None
_GLOBAL_TOKENIZER = None
_GLOBAL_TENSORBOARD_WRITER = None
_GLOBAL_ADLR_AUTORESUME = None
_GLOBAL_TIMERS = None
def get_args():
"""Return arguments."""
_ensure_var_is_initialized(_GLOBAL_ARGS, 'args')
return _GLOBAL_ARGS
def get_num_microbatches():
return _GLOBAL_NUM_MICROBATCHES_CALCULATOR.get()
def get_current_global_batch_size():
return _GLOBAL_NUM_MICROBATCHES_CALCULATOR.get_current_global_batch_size()
def update_num_microbatches(consumed_samples, consistency_check=True):
_GLOBAL_NUM_MICROBATCHES_CALCULATOR.update(consumed_samples,
consistency_check)
# def get_tokenizer():
# """Return tokenizer."""
# _ensure_var_is_initialized(_GLOBAL_TOKENIZER, 'tokenizer')
# return _GLOBAL_TOKENIZER
def get_tensorboard_writer():
"""Return tensorboard writer. It can be None so no need
to check if it is initialized."""
return _GLOBAL_TENSORBOARD_WRITER
def get_adlr_autoresume():
"""ADLR autoresume object. It can be None so no need
to check if it is initialized."""
return _GLOBAL_ADLR_AUTORESUME
def get_timers():
"""Return timers."""
_ensure_var_is_initialized(_GLOBAL_TIMERS, 'timers')
return _GLOBAL_TIMERS
def set_global_variables(extra_args_provider=None, args_defaults={},
ignore_unknown_args=False):
"""Set args, tokenizer, tensorboard-writer, adlr-autoresume, and timers."""
args = _parse_args(extra_args_provider=extra_args_provider,
defaults=args_defaults,
ignore_unknown_args=ignore_unknown_args)
_build_num_microbatches_calculator(args)
# if args.vocab_file:
# _ = _build_tokenizer(args)
_set_tensorboard_writer(args)
_set_adlr_autoresume(args)
_set_timers()
def _parse_args(extra_args_provider=None, defaults={},
ignore_unknown_args=False):
"""Parse entire arguments."""
global _GLOBAL_ARGS
_ensure_var_is_not_initialized(_GLOBAL_ARGS, 'args')
_GLOBAL_ARGS = parse_args(extra_args_provider=extra_args_provider,
defaults=defaults,
ignore_unknown_args=ignore_unknown_args)
return _GLOBAL_ARGS
def _build_num_microbatches_calculator(args):
global _GLOBAL_NUM_MICROBATCHES_CALCULATOR
_ensure_var_is_not_initialized(_GLOBAL_NUM_MICROBATCHES_CALCULATOR,
'num microbatches calculator')
_GLOBAL_NUM_MICROBATCHES_CALCULATOR = build_num_microbatches_calculator(
args)
# def _build_tokenizer(args):
# """Initialize tokenizer."""
# global _GLOBAL_TOKENIZER
# _ensure_var_is_not_initialized(_GLOBAL_TOKENIZER, 'tokenizer')
# _GLOBAL_TOKENIZER = build_tokenizer(args)
# return _GLOBAL_TOKENIZER
# def rebuild_tokenizer(args):
# global _GLOBAL_TOKENIZER
# _GLOBAL_TOKENIZER = None
# return _build_tokenizer(args)
def _set_tensorboard_writer(args):
"""Set tensorboard writer."""
global _GLOBAL_TENSORBOARD_WRITER
_ensure_var_is_not_initialized(_GLOBAL_TENSORBOARD_WRITER,
'tensorboard writer')
if hasattr(args, 'tensorboard_dir') and \
args.tensorboard_dir and args.rank == (args.world_size - 1):
try:
from torch.utils.tensorboard import SummaryWriter
print('> setting tensorboard ...')
_GLOBAL_TENSORBOARD_WRITER = SummaryWriter(
log_dir=args.tensorboard_dir,
max_queue=args.tensorboard_queue_size)
except ModuleNotFoundError:
print('WARNING: TensorBoard writing requested but is not '
'available (are you using PyTorch 1.1.0 or later?), '
'no TensorBoard logs will be written.', flush=True)
def _set_adlr_autoresume(args):
"""Initialize ADLR autoresume."""
global _GLOBAL_ADLR_AUTORESUME
_ensure_var_is_not_initialized(_GLOBAL_ADLR_AUTORESUME, 'adlr autoresume')
if args.adlr_autoresume:
if args.rank == 0:
print('enabling autoresume ...', flush=True)
sys.path.append(os.environ.get('SUBMIT_SCRIPTS', '.'))
try:
from userlib.auto_resume import AutoResume
except BaseException:
print('ADLR autoresume is not available, exiting ...')
sys.exit()
_GLOBAL_ADLR_AUTORESUME = AutoResume
def _set_timers():
"""Initialize timers."""
global _GLOBAL_TIMERS
_ensure_var_is_not_initialized(_GLOBAL_TIMERS, 'timers')
_GLOBAL_TIMERS = Timers()
def _ensure_var_is_initialized(var, name):
"""Make sure the input variable is not None."""
assert var is not None, '{} is not initialized.'.format(name)
def _ensure_var_is_not_initialized(var, name):
"""Make sure the input variable is not None."""
assert var is None, '{} is already initialized.'.format(name)
class _Timer:
"""Timer."""
def __init__(self, name):
self.name_ = name
self.elapsed_ = 0.0
self.started_ = False
self.start_time = time.time()
def start(self):
"""Start the timer."""
assert not self.started_, 'timer has already been started'
torch.cuda.synchronize()
self.start_time = time.time()
self.started_ = True
def stop(self):
"""Stop the timer."""
assert self.started_, 'timer is not started'
torch.cuda.synchronize()
self.elapsed_ += (time.time() - self.start_time)
self.started_ = False
def reset(self):
"""Reset timer."""
self.elapsed_ = 0.0
self.started_ = False
def elapsed(self, reset=True):
"""Calculate the elapsed time."""
started_ = self.started_
# If the timing in progress, end it first.
if self.started_:
self.stop()
# Get the elapsed time.
elapsed_ = self.elapsed_
# Reset the elapsed time
if reset:
self.reset()
# If timing was in progress, set it back.
if started_:
self.start()
return elapsed_
class Timers:
"""Group of timers."""
def __init__(self):
self.timers = {}
def __call__(self, name):
if name not in self.timers:
self.timers[name] = _Timer(name)
return self.timers[name]
def write(self, names, writer, iteration, normalizer=1.0, reset=False):
"""Write timers to a tensorboard writer"""
# currently when using add_scalars,
# torch.utils.add_scalars makes each timer its own run, which
# polutes the runs list, so we just add each as a scalar
assert normalizer > 0.0
for name in names:
value = self.timers[name].elapsed(reset=reset) / normalizer
writer.add_scalar(name + '-time', value, iteration)
def log(self, names, normalizer=1.0, reset=True):
"""Log a group of timers."""
assert normalizer > 0.0
string = 'time (ms)'
for name in names:
elapsed_time = self.timers[name].elapsed(
reset=reset) * 1000.0 / normalizer
string += ' | {}: {:.2f}'.format(name, elapsed_time)
if torch.distributed.is_initialized():
if torch.distributed.get_rank() == (
torch.distributed.get_world_size() - 1):
print(string, flush=True)
else:
print(string, flush=True)
# coding=utf-8
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import torch
def ensure_divisibility(numerator, denominator):
"""Ensure that numerator is divisible by the denominator."""
assert numerator % denominator == 0, "{} is not divisible by {}".format(numerator, denominator)
def divide(numerator, denominator):
"""Ensure that numerator is divisible by the denominator and return
the division value."""
ensure_divisibility(numerator, denominator)
return numerator // denominator
def split_tensor_along_last_dim(tensor, num_partitions, contiguous_split_chunks=False):
"""Split a tensor along its last dimension.
Arguments:
tensor: input tensor.
num_partitions: number of partitions to split the tensor
contiguous_split_chunks: If True, make each chunk contiguous
in memory.
"""
# Get the size and dimension.
last_dim = tensor.dim() - 1
last_dim_size = divide(tensor.size()[last_dim], num_partitions)
# Split.
tensor_list = torch.split(tensor, last_dim_size, dim=last_dim)
# Note: torch.split does not create contiguous tensors by default.
if contiguous_split_chunks:
return tuple(chunk.contiguous() for chunk in tensor_list)
return tensor_list
class VocabUtility:
"""Split the vocabulary into `world_size` chunks amd return the
first and last index of the vocabulary belonging to the `rank`
partition: Note that indecies in [fist, last)"""
@staticmethod
def vocab_range_from_per_partition_vocab_size(per_partition_vocab_size, rank, world_size):
index_f = rank * per_partition_vocab_size
index_l = index_f + per_partition_vocab_size
return index_f, index_l
@staticmethod
def vocab_range_from_global_vocab_size(global_vocab_size, rank, world_size):
per_partition_vocab_size = divide(global_vocab_size, world_size)
return VocabUtility.vocab_range_from_per_partition_vocab_size(per_partition_vocab_size, rank, world_size)
......@@ -130,12 +130,13 @@ std::vector<at::Tensor> layer_norm(
int n1,n2;
check_args(input,normalized_shape,n1,n2);
at::Tensor output = at::empty_like(input);
at::Tensor mean = at::empty({n1}, input.options().dtype(input.scalar_type()==at::ScalarType::Half ? at::ScalarType::Float : input.scalar_type()));
at::Tensor mean = at::empty({n1}, input.options().dtype(input.scalar_type()==at::ScalarType::Half || input.scalar_type()==at::ScalarType::BFloat16 ? at::ScalarType::Float : input.scalar_type()));
at::Tensor invvar = at::empty_like(mean);
cuda_layer_norm(&output,&mean,&invvar,&input,n1,n2,
normalized_shape,NULL,NULL,epsilon);
return {output, mean, invvar};
}
std::vector<at::Tensor> layer_norm_affine(
at::Tensor input,
#ifdef VERSION_GE_1_1
......@@ -152,13 +153,35 @@ std::vector<at::Tensor> layer_norm_affine(
int n1,n2;
check_args(input,normalized_shape,gamma,beta,n1,n2);
at::Tensor output = at::empty_like(input);
at::Tensor mean = at::empty({n1}, input.options().dtype(input.scalar_type()==at::ScalarType::Half ? at::ScalarType::Float : input.scalar_type()));
const auto stats_dtype = (input.scalar_type() == at::ScalarType::Half || input.scalar_type() == at::ScalarType::BFloat16) ? at::ScalarType::Float : input.scalar_type();
at::Tensor mean = at::empty({n1}, input.options().dtype(stats_dtype));
at::Tensor invvar = at::empty_like(mean);
cuda_layer_norm(&output,&mean,&invvar,&input,n1,n2,
normalized_shape,&gamma,&beta,epsilon);
return {output, mean, invvar};
}
std::vector<at::Tensor> layer_norm_affine_mixed_dtypes(
at::Tensor input,
#ifdef VERSION_GE_1_1
at::IntArrayRef normalized_shape,
#else
at::IntList normalized_shape,
#endif
at::Tensor gamma,
at::Tensor beta,
double epsilon) {
CHECK_INPUT(input);
int n1, n2;
check_args(input, normalized_shape, n1, n2);
at::Tensor output = at::empty_like(input, gamma.options().dtype(gamma.scalar_type()));
at::Tensor mean = at::empty({n1}, input.options().dtype(input.scalar_type() == at::ScalarType::Half || input.scalar_type() == at::ScalarType::BFloat16 ? at::ScalarType::Float : input.scalar_type()));
at::Tensor invvar = at::empty_like(mean);
cuda_layer_norm(&output, &mean, &invvar, &input, n1, n2,
normalized_shape, &gamma, &beta, epsilon);
return {output, mean, invvar};
}
void cuda_layer_norm_gradient(
at::Tensor* dout,
at::Tensor* mean,
......@@ -202,6 +225,7 @@ at::Tensor layer_norm_gradient(
&grad_input,NULL,NULL);
return grad_input;
}
std::vector<at::Tensor> layer_norm_gradient_affine(
at::Tensor dout,
at::Tensor mean,
......@@ -237,5 +261,7 @@ PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
m.def("forward", &layer_norm, "LayerNorm forward (CUDA)");
m.def("backward_affine", &layer_norm_gradient_affine, "LayerNorm backward (CUDA)");
m.def("backward", &layer_norm_gradient, "LayerNorm backward (CUDA)");
m.def("forward_affine_mixed_dtypes", &layer_norm_affine_mixed_dtypes, "LayerNorm forward with mixed dtypes (CUDA) compatible with Megatron's implementation");
}
......@@ -56,7 +56,7 @@ void cuWelfordMuSigma2(
const int i1,
U& mu,
U& sigma2,
U* buf)
U* buf)
{
// Assumptions:
// 1) blockDim.x == warpSize
......@@ -140,7 +140,7 @@ void cuWelfordMuSigma2(
const int i1,
float& mu,
float& sigma2,
float* buf)
float* buf)
{
// Assumptions:
// 1) blockDim.x == warpSize
......@@ -173,7 +173,7 @@ void cuWelfordMuSigma2(
for (int k = 0; k < 8; k+=2) {
float2 curr = __half22float2(*((__half2*)(lvals+l+k)));
cuWelfordOnlineSum(curr.x,mu,sigma2,count);
cuWelfordOnlineSum(curr.y,mu,sigma2,count);
cuWelfordOnlineSum(curr.y,mu,sigma2,count);
}
}
for (; l < n2; ++l) {
......@@ -276,18 +276,18 @@ struct SharedMemory <double>
};
}
template<typename T, typename U> __global__
void cuApplyLayerNorm(
T* __restrict__ output_vals,
template<typename T, typename U, typename V> __device__
void cuApplyLayerNorm_(
V* __restrict__ output_vals,
U* __restrict__ mean,
U* __restrict__ invvar,
const T* __restrict__ vals,
const int n1,
const int n2,
const U epsilon,
const T* __restrict__ gamma,
const T* __restrict__ beta
)
const V* __restrict__ gamma,
const V* __restrict__ beta
)
{
// Assumptions:
// 1) blockDim.x == warpSize
......@@ -299,19 +299,19 @@ void cuApplyLayerNorm(
U mu,sigma2;
cuWelfordMuSigma2(vals,n1,n2,i1,mu,sigma2,buf);
const T* lvals = vals + i1*n2;
T* ovals = output_vals + i1*n2;
V* ovals = output_vals + i1*n2;
U c_invvar = rsqrt(sigma2 + epsilon);
const int numx = blockDim.x * blockDim.y;
const int thrx = threadIdx.x + threadIdx.y * blockDim.x;
if (gamma != NULL && beta != NULL) {
for (int i = thrx; i < n2; i+=numx) {
U curr = static_cast<U>(lvals[i]);
ovals[i] = gamma[i] * static_cast<T>(c_invvar * (curr - mu)) + beta[i];
ovals[i] = gamma[i] * static_cast<V>(c_invvar * (curr - mu)) + beta[i];
}
} else {
for (int i = thrx; i < n2; i+=numx) {
U curr = static_cast<U>(lvals[i]);
ovals[i] = static_cast<T>(c_invvar * (curr - mu));
ovals[i] = static_cast<V>(c_invvar * (curr - mu));
}
}
if (threadIdx.x == 0 && threadIdx.y == 0) {
......@@ -321,7 +321,24 @@ void cuApplyLayerNorm(
}
}
template<typename T, typename U> __device__
template<typename T, typename U, typename V=T> __global__
void cuApplyLayerNorm(
V* __restrict__ output_vals,
U* __restrict__ mean,
U* __restrict__ invvar,
const T* __restrict__ vals,
const int n1,
const int n2,
const U epsilon,
const V* __restrict__ gamma,
const V* __restrict__ beta
)
{
cuApplyLayerNorm_<T, U, V>(output_vals, mean, invvar, vals, n1, n2, epsilon, gamma, beta);
}
template<typename T, typename U, typename V> __device__
void cuLoadWriteStridedInputs(
const int i1_block,
const int thr_load_row_off,
......@@ -331,7 +348,7 @@ void cuLoadWriteStridedInputs(
U* warp_buf1,
U* warp_buf2,
const T* input,
const T* dout,
const V* dout,
const int i1_end,
const int n2,
const U* __restrict__ mean,
......@@ -348,9 +365,9 @@ void cuLoadWriteStridedInputs(
int write_idx = thr_load_row_off*row_stride+thr_load_col_off+k;
if (i2<n2) {
U curr_input = static_cast<U>(input[load_idx]);
U curr_dout = static_cast<U>(dout[load_idx]);
warp_buf1[write_idx] = curr_dout;
warp_buf2[write_idx] = curr_dout * (curr_input - curr_mean) * curr_invvar;
U curr_dout = static_cast<U>(dout[load_idx]);
warp_buf1[write_idx] = curr_dout;
warp_buf2[write_idx] = curr_dout * (curr_input - curr_mean) * curr_invvar;
} else {
warp_buf1[write_idx] = U(0);
warp_buf2[write_idx] = U(0);
......@@ -365,7 +382,7 @@ void cuLoadWriteStridedInputs(
}
}
template<typename T, typename U> __device__
template<typename T, typename U, typename V> __device__
void cuLoadAddStridedInputs(
const int i1_block,
const int thr_load_row_off,
......@@ -375,7 +392,7 @@ void cuLoadAddStridedInputs(
U* warp_buf1,
U* warp_buf2,
const T* input,
const T* dout,
const V* dout,
const int i1_end,
const int n2,
const U* __restrict__ mean,
......@@ -392,17 +409,17 @@ void cuLoadAddStridedInputs(
int write_idx = thr_load_row_off*row_stride+thr_load_col_off+k;
if (i2<n2) {
U curr_input = static_cast<U>(input[load_idx]);
U curr_dout = static_cast<U>(dout[load_idx]);
warp_buf1[write_idx] += curr_dout;
warp_buf2[write_idx] += curr_dout * (curr_input - curr_mean) * curr_invvar;
U curr_dout = static_cast<U>(dout[load_idx]);
warp_buf1[write_idx] += curr_dout;
warp_buf2[write_idx] += curr_dout * (curr_input - curr_mean) * curr_invvar;
}
}
}
}
template<typename T, typename U> __global__
template<typename T, typename U, typename V> __global__
void cuComputePartGradGammaBeta(
const T* __restrict__ dout,
const V* __restrict__ dout,
const T* __restrict__ input,
const int n1,
const int n2,
......@@ -449,11 +466,11 @@ void cuComputePartGradGammaBeta(
for (int offset = blockDim.y/2; offset > 1; offset /= 2) {
if (threadIdx.y < offset) {
int row1 = threadIdx.y;
int row2 = threadIdx.y + offset;
int idx1 = row1*row_stride + threadIdx.x;
int idx2 = row2*row_stride + threadIdx.x;
warp_buf1[idx1] += warp_buf1[idx2];
warp_buf2[idx1] += warp_buf2[idx2];
int row2 = threadIdx.y + offset;
int idx1 = row1*row_stride + threadIdx.x;
int idx2 = row2*row_stride + threadIdx.x;
warp_buf1[idx1] += warp_buf1[idx2];
warp_buf2[idx1] += warp_buf2[idx2];
}
__syncthreads();
}
......@@ -468,19 +485,19 @@ void cuComputePartGradGammaBeta(
}
}
template<typename T, typename U> __global__
template<typename U, typename V> __global__
void cuComputeGradGammaBeta(
const U* part_grad_gamma,
const U* part_grad_beta,
const int part_size,
const int n1,
const int n2,
T* grad_gamma,
T* grad_beta)
V* grad_gamma,
V* grad_beta)
{
// sum partial gradients for gamma and beta
SharedMemory<U> shared;
U* buf = shared.getPointer();
U* buf = shared.getPointer();
int i2 = blockIdx.x * blockDim.x + threadIdx.x;
if (i2 < n2) {
// each warp does sequential reductions until reduced part_size is num_warps
......@@ -519,16 +536,16 @@ void cuComputeGradGammaBeta(
}
}
template<typename T, typename U> __global__
template<typename T, typename U, typename V> __global__
void cuComputeGradInput(
const T* __restrict__ dout,
const V* __restrict__ dout,
const T* __restrict__ input,
const int n1,
const int n2,
const U* __restrict__ mean,
const U* __restrict__ invvar,
U epsilon,
const T* gamma,
const V* gamma,
T* grad_input)
{
for (auto i1=blockIdx.y; i1 < n1; i1 += gridDim.y) {
......@@ -537,7 +554,7 @@ void cuComputeGradInput(
const U c_mean = mean[i1];
const U c_invvar = invvar[i1];
const T* k_input = input + i1*n2;
const T* k_dout = dout + i1*n2;
const V* k_dout = dout + i1*n2;
const int numx = blockDim.x * blockDim.y;
const int thrx = threadIdx.x + threadIdx.y * blockDim.x;
if (gamma != NULL) {
......@@ -581,7 +598,7 @@ void cuComputeGradInput(
// inter-warp reductions
if (blockDim.y > 1) {
SharedMemory<U> shared;
U* buf = shared.getPointer();
U* buf = shared.getPointer();
for (int offset = blockDim.y/2; offset > 0; offset /= 2) {
// upper half of warps write to shared
if (threadIdx.y >= offset && threadIdx.y < 2*offset) {
......@@ -606,7 +623,7 @@ void cuComputeGradInput(
if (threadIdx.y !=0) {
sum_loss1 = buf[2*threadIdx.x];
sum_loss2 = buf[2*threadIdx.x+1];
}
}
}
// all threads now have the two sums over l
U fH = (U)n2;
......@@ -636,35 +653,29 @@ void cuComputeGradInput(
}
}
template<typename T, typename U>
template<typename T, typename U, typename V=T>
void HostApplyLayerNorm(
T* output,
V* output,
U* mean,
U* invvar,
const T* input,
int n1,
int n2,
double epsilon,
const T* gamma,
const T* beta
const V* gamma,
const V* beta
)
{
auto stream = at::cuda::getCurrentCUDAStream().stream();
const dim3 threads(32,4,1);
const uint64_t maxGridY = at::cuda::getCurrentDeviceProperties()->maxGridSize[1];
const dim3 blocks(1, std::min((uint64_t)n1, maxGridY), 1);
int nshared =
threads.y > 1 ?
threads.y*sizeof(U)+(threads.y/2)*sizeof(U) :
int nshared =
threads.y > 1 ?
threads.y*sizeof(U)+(threads.y/2)*sizeof(U) :
0;
cuApplyLayerNorm<<<blocks, threads, nshared, stream>>>(
output,
mean,
invvar,
input,
n1,n2,
U(epsilon),
gamma,beta);
output, mean, invvar, input, n1, n2, U(epsilon), gamma, beta);
}
void cuda_layer_norm(
......@@ -684,34 +695,35 @@ void cuda_layer_norm(
double epsilon)
{
using namespace at;
DISPATCH_DOUBLE_FLOAT_AND_HALF(input->scalar_type(), 0, "layer_norm_cuda_kernel",
using accscalar_t = at::acc_type<scalar_t_0, true>;
HostApplyLayerNorm(
output->DATA_PTR<scalar_t_0>(),
mean->DATA_PTR<accscalar_t>(),
invvar->DATA_PTR<accscalar_t>(),
input->DATA_PTR<scalar_t_0>(),
n1,n2,
epsilon,
gamma != NULL ? gamma->DATA_PTR<scalar_t_0>() : NULL,
beta != NULL ? beta->DATA_PTR<scalar_t_0>() : NULL);
DISPATCH_DOUBLE_FLOAT_HALF_AND_BFLOAT_INOUT_TYPES(
input->scalar_type(), output->scalar_type(), "layer_norm_cuda_kernel",
using accscalar_t = at::acc_type<scalar_t_in, true>;
HostApplyLayerNorm<scalar_t_in, accscalar_t, scalar_t_out>(
output->DATA_PTR<scalar_t_out>(),
mean->DATA_PTR<accscalar_t>(),
invvar->DATA_PTR<accscalar_t>(),
input->DATA_PTR<scalar_t_in>(),
n1,n2,
epsilon,
gamma != NULL ? gamma->DATA_PTR<scalar_t_out>() : NULL,
beta != NULL ? beta->DATA_PTR<scalar_t_out>() : NULL);
)
}
template<typename T, typename U>
template<typename T, typename U=float, typename V=T>
void HostLayerNormGradient(
const T* dout,
const V* dout,
const U* mean,
const U* invvar,
at::Tensor* input,
int n1,
int n2,
const T* gamma,
const T* beta,
const V* gamma,
const V* beta,
double epsilon,
T* grad_input,
T* grad_gamma,
T* grad_beta
V* grad_gamma,
V* grad_beta
)
{
auto stream = at::cuda::getCurrentCUDAStream().stream();
......@@ -724,7 +736,13 @@ void HostLayerNormGradient(
const int nshared2_a = 2 * sizeof(U) * threads2.y * threads2.y * (threads2.x + 1);
const int nshared2_b = threads2.x * threads2.y * sizeof(U);
const int nshared2 = nshared2_a > nshared2_b ? nshared2_a : nshared2_b;
at::Tensor part_grad_gamma = at::empty({part_size,n2}, input->options().dtype(input->scalar_type()==at::ScalarType::Half ? at::ScalarType::Float : input->scalar_type()));
// note (mkozuki): I can hard code part_grad_gamma's dtype as float given that
// the `cuda_layer_norm_gradient` doesn't support double.
const auto part_grad_dtype =
(input->scalar_type() == at::ScalarType::Half || input->scalar_type() == at::ScalarType::BFloat16) ?
at::ScalarType::Float :
input->scalar_type();
at::Tensor part_grad_gamma = at::empty({part_size,n2}, input->options().dtype(part_grad_dtype));
at::Tensor part_grad_beta = at::empty_like(part_grad_gamma);
cuComputePartGradGammaBeta<<<blocks2, threads2, nshared2, stream>>>(
dout,
......@@ -787,21 +805,23 @@ void cuda_layer_norm_gradient(
at::Tensor* grad_beta)
{
using namespace at;
DISPATCH_FLOAT_AND_HALF(input->scalar_type(), 0, "cuComputeGradInput",
using accscalar_t = at::acc_type<scalar_t_0, true>;
HostLayerNormGradient(
dout->DATA_PTR<scalar_t_0>(),
mean->DATA_PTR<accscalar_t>(),
invvar->DATA_PTR<accscalar_t>(),
input,
n1,n2,
// we can do away with `accscalar_t` as there're only three dtypes: fp32, fp16, bf16
DISPATCH_FLOAT_HALF_AND_BFLOAT_INOUT_TYPES(
input->scalar_type(), gamma == NULL ? input->scalar_type() : gamma->scalar_type(), "cuComputeGradInput",
using accscalar_t = at::acc_type<scalar_t_in, true>;
HostLayerNormGradient(
dout->DATA_PTR<scalar_t_out>(),
mean->DATA_PTR<accscalar_t>(),
invvar->DATA_PTR<accscalar_t>(),
input,
n1,n2,
// TMJ pass NULL argument for gamma, beta, grad_gamma and grad_beta
// if gamma Tensor is NULL on input.
gamma != NULL ? gamma->DATA_PTR<scalar_t_0>() : NULL,
gamma != NULL ? beta->DATA_PTR<scalar_t_0>() : NULL,
epsilon,
grad_input->DATA_PTR<scalar_t_0>(),
gamma != NULL ? grad_gamma->DATA_PTR<scalar_t_0>() : NULL,
gamma != NULL ? grad_beta->DATA_PTR<scalar_t_0>() : NULL);
)
gamma != NULL ? gamma->DATA_PTR<scalar_t_out>() : NULL,
gamma != NULL ? beta->DATA_PTR<scalar_t_out>() : NULL,
epsilon,
grad_input->DATA_PTR<scalar_t_in>(),
gamma != NULL ? grad_gamma->DATA_PTR<scalar_t_out>() : NULL,
gamma != NULL ? grad_beta->DATA_PTR<scalar_t_out>() : NULL);
)
}
/* coding=utf-8
* Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <cuda_fp16.h>
#include <torch/extension.h>
#include <vector>
namespace multihead_attn {
namespace fused_softmax {
namespace scaled_masked_softmax {
torch::Tensor fwd_cuda(
torch::Tensor const& input,
torch::Tensor const& mask,
float scale_factor);
torch::Tensor bwd_cuda(
torch::Tensor const& output_grads,
torch::Tensor const& softmax_results,
float scale_factor);
int get_batch_per_block_cuda(
int query_seq_len,
int key_seq_len,
int batches,
int attn_heads);
torch::Tensor fwd(
torch::Tensor const& input,
torch::Tensor const& mask,
float scale_factor) {
AT_ASSERTM(input.dim() == 4, "expected 4D tensor");
AT_ASSERTM((input.scalar_type() == at::ScalarType::Half) ||
(input.scalar_type() == at::ScalarType::BFloat16),
"Only fp16 and bf16 are supported");
AT_ASSERTM(mask.dim() == 4, "expected 4D tensor");
return fwd_cuda(input, mask, scale_factor);
}
torch::Tensor bwd(
torch::Tensor const& output_grads,
torch::Tensor const& softmax_results,
float scale_factor) {
AT_ASSERTM(output_grads.dim() == 4, "expected 3D tensor");
AT_ASSERTM(softmax_results.dim() == 4, "expected 3D tensor");
AT_ASSERTM((output_grads.scalar_type() == at::ScalarType::Half) ||
(output_grads.scalar_type() == at::ScalarType::BFloat16),
"Only fp16 and bf16 are supported");
AT_ASSERTM((softmax_results.scalar_type() == at::ScalarType::Half) ||
(softmax_results.scalar_type() == at::ScalarType::BFloat16),
"Only fp16 and bf16 are supported");
return bwd_cuda(output_grads, softmax_results, scale_factor);
}
int get_batch_per_block(
int query_seq_len,
int key_seq_len,
int batches,
int attn_heads) {
return get_batch_per_block_cuda(query_seq_len, key_seq_len, batches, attn_heads);
}
} // end namespace scaled_masked_softmax
} // end namespace fused_softmax
} // end namespace multihead_attn
PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
m.def("forward",
&multihead_attn::fused_softmax::scaled_masked_softmax::fwd,
"Self Multihead Attention scaled, time masked softmax -- Forward.");
m.def("backward",
&multihead_attn::fused_softmax::scaled_masked_softmax::bwd,
"Self Multihead Attention scaled, time masked softmax -- Backward.");
m.def("get_batch_per_block",
&multihead_attn::fused_softmax::scaled_masked_softmax::get_batch_per_block,
"Return Batch per block size."
);
}
/* coding=utf-8
* Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#pragma once
#include <assert.h>
#include <cuda_fp16.h>
#include <cfloat>
#include <limits>
#include <stdint.h>
#include <cuda_fp16.h>
#include <c10/macros/Macros.h>
namespace {
template <typename Datatype, int ELEMENTS_PER_LDG>
__device__ __inline__ void copy_vector(Datatype *dst, const Datatype *src);
template <>
__device__ __inline__ void copy_vector<c10::BFloat16, 1>(c10::BFloat16 *dst, const c10::BFloat16 *src) { *dst = *src; }
template <>
__device__ __inline__ void copy_vector<c10::BFloat16, 4>(c10::BFloat16 *dst, const c10::BFloat16 *src) { *((float2*) dst) = *((float2*) src); }
template <>
__device__ __inline__ void copy_vector<c10::Half, 1>(c10::Half *dst, const c10::Half *src) { *dst = *src; }
template <>
__device__ __inline__ void copy_vector<c10::Half, 4>(c10::Half *dst, const c10::Half *src) { *((float2*) dst) = *((float2*) src); }
template <>
__device__ __inline__ void copy_vector<uint8_t, 1>(uint8_t *dst, const uint8_t *src) { *dst = *src; }
template <>
__device__ __inline__ void copy_vector<uint8_t, 4>(uint8_t *dst, const uint8_t *src) {*((half2*) dst) = *((half2*) src); }
int log2_ceil(int value) {
int log2_value = 0;
while ((1 << log2_value) < value) ++log2_value;
return log2_value;
}
template<typename T>
struct Add {
__device__ __forceinline__ T operator()(T a, T b) const {
return a + b;
}
};
template<typename T>
struct Max {
__device__ __forceinline__ T operator()(T a, T b) const {
return a < b ? b : a;
}
};
template <typename T>
__device__ __forceinline__ T WARP_SHFL_XOR_NATIVE(T value, int laneMask, int width = warpSize, unsigned int mask = 0xffffffff)
{
#if CUDA_VERSION >= 9000
return __shfl_xor_sync(mask, value, laneMask, width);
#else
return __shfl_xor(value, laneMask, width);
#endif
}
template <typename acc_t, int WARP_BATCH, int WARP_SIZE, template<typename> class ReduceOp>
__device__ __forceinline__ void warp_reduce(acc_t* sum) {
ReduceOp<acc_t> r;
#pragma unroll
for (int offset = WARP_SIZE / 2; offset > 0; offset /= 2) {
#pragma unroll
for (int i = 0; i < WARP_BATCH; ++i) {
acc_t b = WARP_SHFL_XOR_NATIVE(sum[i], offset, WARP_SIZE);
sum[i] = r(sum[i], b);
}
}
}
/*
* Extended softmax (from native aten pytorch) with following additional features
* 1) input scaling
* 2) Explicit masking
*/
template <typename input_t, typename output_t, typename acc_t, int log2_elements>
__global__ void scaled_masked_softmax_warp_forward(
output_t *dst,
const input_t *src,
const uint8_t *mask,
const acc_t scale,
int micro_batch_size,
int element_count,
int pad_batches)
{
// WARP_SIZE and WARP_BATCH must match the return values batches_per_warp and
// warp_size of method warp_softmax_forward_kernel.
constexpr int next_power_of_two = 1 << log2_elements;
constexpr int WARP_SIZE = (next_power_of_two < C10_WARP_SIZE) ? next_power_of_two : C10_WARP_SIZE;
constexpr int WARP_ITERATIONS = next_power_of_two / WARP_SIZE;
constexpr int WARP_BATCH = (next_power_of_two <= 128) ? 2 : 1;
constexpr int ELEMENTS_PER_LDG_STG = (WARP_ITERATIONS < 4) ? 1 : 4;
// blockDim/threadIdx = (WARP_SIZE, WARPS_PER_BLOCK, )
// gridDim/blockIdx = (seq_len, attn_heads, batches)
int first_batch = (blockDim.y * (blockIdx.x + gridDim.x * (blockIdx.y + gridDim.y * blockIdx.z))+ threadIdx.y) * WARP_BATCH;
int pad_first_batch = 0;
if (pad_batches != 1) { // bert style
pad_first_batch = (blockDim.y * (blockIdx.x + gridDim.x * blockIdx.z) + threadIdx.y) * WARP_BATCH;
} else { // gpt2 style
pad_first_batch = (blockDim.y * blockIdx.x + threadIdx.y) * WARP_BATCH;
}
// micro_batch_size might not be a multiple of WARP_BATCH. Check how
// many batches have to computed within this WARP.
int local_batches = micro_batch_size - first_batch;
if (local_batches > WARP_BATCH)
local_batches = WARP_BATCH;
// there might be multiple batches per warp. compute the index within the batch
int local_idx = threadIdx.x;
src += first_batch * element_count + ELEMENTS_PER_LDG_STG * local_idx;
dst += first_batch * element_count + ELEMENTS_PER_LDG_STG * local_idx;
mask += pad_first_batch * element_count + ELEMENTS_PER_LDG_STG * local_idx;
// load data from global memory
acc_t elements[WARP_BATCH][WARP_ITERATIONS];
input_t temp_data[ELEMENTS_PER_LDG_STG];
uint8_t temp_mask[ELEMENTS_PER_LDG_STG];
#pragma unroll
for (int i = 0; i < WARP_BATCH; ++i) {
int batch_element_count = (i >= local_batches) ? 0 : element_count;
#pragma unroll
for (int it = 0; it < WARP_ITERATIONS; it+=ELEMENTS_PER_LDG_STG) {
int element_index = ELEMENTS_PER_LDG_STG * local_idx + it * WARP_SIZE;
if (element_index < batch_element_count) {
int itr_idx = i*element_count+it*WARP_SIZE;
copy_vector<input_t, ELEMENTS_PER_LDG_STG>(temp_data, src + itr_idx);
copy_vector<uint8_t, ELEMENTS_PER_LDG_STG>(temp_mask, mask + itr_idx);
#pragma unroll
for (int element = 0; element < ELEMENTS_PER_LDG_STG; ++element) {
if (temp_mask[element] != 1) {
elements[i][it + element] = (acc_t)temp_data[element] * scale;
} else {
elements[i][it + element] = -10000.0;
}
}
} else {
#pragma unroll
for (int element = 0; element < ELEMENTS_PER_LDG_STG; ++element) {
elements[i][it + element] = -std::numeric_limits<acc_t>::infinity();
}
}
}
}
// compute max_value
acc_t max_value[WARP_BATCH];
#pragma unroll
for (int i = 0; i < WARP_BATCH; ++i) {
max_value[i] = elements[i][0];
#pragma unroll
for (int it = 1; it < WARP_ITERATIONS; ++it) {
max_value[i] = (max_value[i] > elements[i][it]) ? max_value[i] : elements[i][it];
}
}
warp_reduce<acc_t, WARP_BATCH, WARP_SIZE, Max>(max_value);
acc_t sum[WARP_BATCH] { 0.0f };
#pragma unroll
for (int i = 0; i < WARP_BATCH; ++i) {
#pragma unroll
for (int it = 0; it < WARP_ITERATIONS; ++it) {
elements[i][it] = std::exp((elements[i][it] - max_value[i]));
sum[i] += elements[i][it];
}
}
warp_reduce<acc_t, WARP_BATCH, WARP_SIZE, Add>(sum);
// store result
output_t out[ELEMENTS_PER_LDG_STG];
#pragma unroll
for (int i = 0; i < WARP_BATCH; ++i) {
if (i >= local_batches)
break;
#pragma unroll
for (int it = 0; it < WARP_ITERATIONS; it+=ELEMENTS_PER_LDG_STG) {
int element_index = ELEMENTS_PER_LDG_STG * local_idx + it * WARP_SIZE;
if (element_index < element_count) {
#pragma unroll
for (int element = 0; element < ELEMENTS_PER_LDG_STG; ++element) {
out[element] = elements[i][it + element] / sum[i];
}
copy_vector<output_t, ELEMENTS_PER_LDG_STG>(dst + i * element_count + it * WARP_SIZE, out);
} else {
break;
}
}
}
}
template <typename input_t, typename output_t, typename acc_t, int log2_elements>
__global__ void scaled_masked_softmax_warp_backward(
output_t *gradInput,
input_t *grad,
const input_t *output,
acc_t scale,
int micro_batch_size,
int element_count)
{
// WARP_SIZE and WARP_BATCH must match the return values batches_per_warp and
// warp_size of method warp_softmax_backward_kernel.
constexpr int next_power_of_two = 1 << log2_elements;
constexpr int WARP_SIZE = (next_power_of_two < C10_WARP_SIZE) ? next_power_of_two : C10_WARP_SIZE;
constexpr int WARP_ITERATIONS = next_power_of_two / WARP_SIZE;
constexpr int WARP_BATCH = (next_power_of_two <= 128) ? 2 : 1;
constexpr int ELEMENTS_PER_LDG_STG = (WARP_ITERATIONS < 4) ? 1 : 4;
// blockDim/threadIdx = (WARP_SIZE, WARPS_PER_BLOCK, )
// gridDim/blockIdx = (seq_len, attn_heads, batches)
int first_batch = (blockDim.y * blockIdx.x + threadIdx.y) * WARP_BATCH;
// micro_batch_size might not be a multiple of WARP_BATCH. Check how
// many batches have to computed within this WARP.
int local_batches = micro_batch_size - first_batch;
if (local_batches > WARP_BATCH)
local_batches = WARP_BATCH;
// there might be multiple batches per warp. compute the index within the batch
int local_idx = threadIdx.x;
// the first element to process by the current thread
int thread_offset = first_batch * element_count + ELEMENTS_PER_LDG_STG * local_idx;
grad += thread_offset;
output += thread_offset;
gradInput += thread_offset;
// load data from global memory
acc_t grad_reg[WARP_BATCH][WARP_ITERATIONS] { 0.0f };
acc_t output_reg[WARP_BATCH][WARP_ITERATIONS] { 0.0f };
input_t temp_grad[ELEMENTS_PER_LDG_STG];
input_t temp_output[ELEMENTS_PER_LDG_STG];
#pragma unroll
for (int i = 0; i < WARP_BATCH; ++i) {
int batch_element_count = (i >= local_batches) ? 0 : element_count;
#pragma unroll
for (int it = 0; it < WARP_ITERATIONS; it+=ELEMENTS_PER_LDG_STG) {
int element_index = ELEMENTS_PER_LDG_STG * local_idx + it * WARP_SIZE;
if (element_index < batch_element_count) {
copy_vector<input_t, ELEMENTS_PER_LDG_STG>(temp_grad, grad + i * element_count + it * WARP_SIZE);
copy_vector<input_t, ELEMENTS_PER_LDG_STG>(temp_output, output + i * element_count + it * WARP_SIZE);
#pragma unroll
for (int element = 0; element < ELEMENTS_PER_LDG_STG; ++element) {
output_reg[i][it + element] = (acc_t)temp_output[element];
}
#pragma unroll
for (int element = 0; element < ELEMENTS_PER_LDG_STG; ++element) {
grad_reg[i][it + element] = (acc_t)temp_grad[element] * output_reg[i][it + element];
}
}
}
}
acc_t sum[WARP_BATCH];
#pragma unroll
for (int i = 0; i < WARP_BATCH; ++i) {
sum[i] = grad_reg[i][0];
#pragma unroll
for (int it = 1; it < WARP_ITERATIONS; ++it) {
sum[i] += grad_reg[i][it];
}
}
warp_reduce<acc_t, WARP_BATCH, WARP_SIZE, Add>(sum);
// store result
#pragma unroll
for (int i = 0; i < WARP_BATCH; ++i) {
if (i >= local_batches)
break;
#pragma unroll
for (int it = 0; it < WARP_ITERATIONS; it+=ELEMENTS_PER_LDG_STG) {
int element_index = ELEMENTS_PER_LDG_STG * local_idx + it * WARP_SIZE;
if (element_index < element_count) {
// compute gradients
output_t out[ELEMENTS_PER_LDG_STG];
#pragma unroll
for (int element = 0; element < ELEMENTS_PER_LDG_STG; ++element) {
out[element] = (output_t)(scale * (grad_reg[i][it + element] - output_reg[i][it + element] * sum[i]));
}
copy_vector<output_t, ELEMENTS_PER_LDG_STG>(gradInput + i * element_count + it * WARP_SIZE, out);
}
}
}
}
} // end of anonymous namespace
int get_batch_per_block(int query_seq_len, int key_seq_len, int batches, int attn_heads){
int log2_elements = log2_ceil(key_seq_len);
const int next_power_of_two = 1 << log2_elements;
int warp_size = (next_power_of_two < C10_WARP_SIZE) ? next_power_of_two : C10_WARP_SIZE;
int batches_per_warp = (next_power_of_two <= 128) ? 2 : 1;
constexpr int threads_per_block = 128;
int warps_per_block = (threads_per_block / warp_size);
int batches_per_block = warps_per_block * batches_per_warp;
return batches_per_block;
}
template<typename input_t, typename output_t, typename acc_t>
void dispatch_scaled_masked_softmax_forward(
output_t *dst,
const input_t *src,
const uint8_t *mask,
const input_t scale,
int query_seq_len,
int key_seq_len,
int batches,
int attn_heads,
int pad_batches)
{
TORCH_INTERNAL_ASSERT(key_seq_len >= 0 && key_seq_len <= 2048 );
if (key_seq_len == 0) {
return;
} else {
int log2_elements = log2_ceil(key_seq_len);
const int next_power_of_two = 1 << log2_elements;
int batch_count = batches * attn_heads * query_seq_len;
// This value must match the WARP_SIZE constexpr value computed inside softmax_warp_forward.
int warp_size = (next_power_of_two < C10_WARP_SIZE) ? next_power_of_two : C10_WARP_SIZE;
// This value must match the WARP_BATCH constexpr value computed inside softmax_warp_forward.
int batches_per_warp = (next_power_of_two <= 128) ? 2 : 1;
// use 128 threads per block to maximimize gpu utilization
constexpr int threads_per_block = 128;
int warps_per_block = (threads_per_block / warp_size);
int batches_per_block = warps_per_block * batches_per_warp;
TORCH_INTERNAL_ASSERT(query_seq_len%batches_per_block == 0);
dim3 blocks(query_seq_len/batches_per_block, attn_heads, batches);
dim3 threads(warp_size, warps_per_block, 1);
// Launch code would be more elegant if C++ supported FOR CONSTEXPR
switch (log2_elements) {
case 0: // 1
scaled_masked_softmax_warp_forward<input_t, output_t, acc_t, 0>
<<<blocks, threads, 0, at::cuda::getCurrentCUDAStream()>>>(dst, src, mask, scale, batch_count, key_seq_len, pad_batches);
break;
case 1: // 2
scaled_masked_softmax_warp_forward<input_t, output_t, acc_t, 1>
<<<blocks, threads, 0, at::cuda::getCurrentCUDAStream()>>>(dst, src, mask, scale, batch_count, key_seq_len, pad_batches);
break;
case 2: // 4
scaled_masked_softmax_warp_forward<input_t, output_t, acc_t, 2>
<<<blocks, threads, 0, at::cuda::getCurrentCUDAStream()>>>(dst, src, mask, scale, batch_count, key_seq_len, pad_batches);
break;
case 3: // 8
scaled_masked_softmax_warp_forward<input_t, output_t, acc_t, 3>
<<<blocks, threads, 0, at::cuda::getCurrentCUDAStream()>>>(dst, src, mask, scale, batch_count, key_seq_len, pad_batches);
break;
case 4: // 16
scaled_masked_softmax_warp_forward<input_t, output_t, acc_t, 4>
<<<blocks, threads, 0, at::cuda::getCurrentCUDAStream()>>>(dst, src, mask, scale, batch_count, key_seq_len, pad_batches);
break;
case 5: // 32
scaled_masked_softmax_warp_forward<input_t, output_t, acc_t, 5>
<<<blocks, threads, 0, at::cuda::getCurrentCUDAStream()>>>(dst, src, mask, scale, batch_count, key_seq_len, pad_batches);
break;
case 6: // 64
scaled_masked_softmax_warp_forward<input_t, output_t, acc_t, 6>
<<<blocks, threads, 0, at::cuda::getCurrentCUDAStream()>>>(dst, src, mask, scale, batch_count, key_seq_len, pad_batches);
break;
case 7: // 128
scaled_masked_softmax_warp_forward<input_t, output_t, acc_t, 7>
<<<blocks, threads, 0, at::cuda::getCurrentCUDAStream()>>>(dst, src, mask, scale, batch_count, key_seq_len, pad_batches);
break;
case 8: // 256
scaled_masked_softmax_warp_forward<input_t, output_t, acc_t, 8>
<<<blocks, threads, 0, at::cuda::getCurrentCUDAStream()>>>(dst, src, mask, scale, batch_count, key_seq_len, pad_batches);
break;
case 9: // 512
scaled_masked_softmax_warp_forward<input_t, output_t, acc_t, 9>
<<<blocks, threads, 0, at::cuda::getCurrentCUDAStream()>>>(dst, src, mask, scale, batch_count, key_seq_len, pad_batches);
break;
case 10: // 1024
scaled_masked_softmax_warp_forward<input_t, output_t, acc_t, 10>
<<<blocks, threads, 0, at::cuda::getCurrentCUDAStream()>>>(dst, src, mask, scale, batch_count, key_seq_len, pad_batches);
break;
case 11: // 2048
scaled_masked_softmax_warp_forward<input_t, output_t, acc_t, 11>
<<<blocks, threads, 0, at::cuda::getCurrentCUDAStream()>>>(dst, src, mask, scale, batch_count, key_seq_len, pad_batches);
break;
default:
break;
}
}
}
template<typename input_t, typename output_t, typename acc_t>
void dispatch_scaled_masked_softmax_backward(
output_t *grad_input,
input_t *grad,
const input_t *output,
const acc_t scale,
int query_seq_len,
int key_seq_len,
int batches,
int attn_heads)
{
TORCH_INTERNAL_ASSERT( key_seq_len >= 0 && key_seq_len <= 2048 );
if (key_seq_len == 0) {
return;
} else {
int log2_elements = log2_ceil(key_seq_len);
const int next_power_of_two = 1 << log2_elements;
int batch_count = batches * attn_heads * query_seq_len;
// This value must match the WARP_SIZE constexpr value computed inside softmax_warp_backward.
int warp_size = (next_power_of_two < C10_WARP_SIZE) ? next_power_of_two : C10_WARP_SIZE;
// This value must match the WARP_BATCH constexpr value computed inside softmax_warp_backward.
int batches_per_warp = (next_power_of_two <= 128) ? 2 : 1;
// use 128 threads per block to maximimize gpu utilization
constexpr int threads_per_block = 128;
int warps_per_block = (threads_per_block / warp_size);
int batches_per_block = warps_per_block * batches_per_warp;
int blocks = batch_count/batches_per_block;
dim3 threads(warp_size, warps_per_block, 1);
// Launch code would be more elegant if C++ supported FOR CONSTEXPR
switch (log2_elements) {
case 0: // 1
scaled_masked_softmax_warp_backward<input_t, output_t, acc_t, 0>
<<<blocks, threads, 0, at::cuda::getCurrentCUDAStream()>>>(grad_input, grad, output, scale, batch_count, key_seq_len);
break;
case 1: // 2
scaled_masked_softmax_warp_backward<input_t, output_t, acc_t, 1>
<<<blocks, threads, 0, at::cuda::getCurrentCUDAStream()>>>(grad_input, grad, output, scale, batch_count, key_seq_len);
break;
case 2: // 4
scaled_masked_softmax_warp_backward<input_t, output_t, acc_t, 2>
<<<blocks, threads, 0, at::cuda::getCurrentCUDAStream()>>>(grad_input, grad, output, scale, batch_count, key_seq_len);
break;
case 3: // 8
scaled_masked_softmax_warp_backward<input_t, output_t, acc_t, 3>
<<<blocks, threads, 0, at::cuda::getCurrentCUDAStream()>>>(grad_input, grad, output, scale, batch_count, key_seq_len);
break;
case 4: // 16
scaled_masked_softmax_warp_backward<input_t, output_t, acc_t, 4>
<<<blocks, threads, 0, at::cuda::getCurrentCUDAStream()>>>(grad_input, grad, output, scale, batch_count, key_seq_len);
break;
case 5: // 32
scaled_masked_softmax_warp_backward<input_t, output_t, acc_t, 5>
<<<blocks, threads, 0, at::cuda::getCurrentCUDAStream()>>>(grad_input, grad, output, scale, batch_count, key_seq_len);
break;
case 6: // 64
scaled_masked_softmax_warp_backward<input_t, output_t, acc_t, 6>
<<<blocks, threads, 0, at::cuda::getCurrentCUDAStream()>>>(grad_input, grad, output, scale, batch_count, key_seq_len);
break;
case 7: // 128
scaled_masked_softmax_warp_backward<input_t, output_t, acc_t, 7>
<<<blocks, threads, 0, at::cuda::getCurrentCUDAStream()>>>(grad_input, grad, output, scale, batch_count, key_seq_len);
break;
case 8: // 256
scaled_masked_softmax_warp_backward<input_t, output_t, acc_t, 8>
<<<blocks, threads, 0, at::cuda::getCurrentCUDAStream()>>>(grad_input, grad, output, scale, batch_count, key_seq_len);
break;
case 9: // 512
scaled_masked_softmax_warp_backward<input_t, output_t, acc_t, 9>
<<<blocks, threads, 0, at::cuda::getCurrentCUDAStream()>>>(grad_input, grad, output, scale, batch_count, key_seq_len);
break;
case 10: // 1024
scaled_masked_softmax_warp_backward<input_t, output_t, acc_t, 10>
<<<blocks, threads, 0, at::cuda::getCurrentCUDAStream()>>>(grad_input, grad, output, scale, batch_count, key_seq_len);
break;
case 11: // 2048
scaled_masked_softmax_warp_backward<input_t, output_t, acc_t, 11>
<<<blocks, threads, 0, at::cuda::getCurrentCUDAStream()>>>(grad_input, grad, output, scale, batch_count, key_seq_len);
break;
default:
break;
}
}
}
/* coding=utf-8
* Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <ATen/ATen.h>
#include <cuda.h>
#include <cuda_runtime.h>
#include <cuda_fp16.h>
#include <cuda_profiler_api.h>
#include <ATen/cuda/CUDAContext.h>
#include <torch/extension.h>
#include "scaled_masked_softmax.h"
#include "type_shim.h"
namespace multihead_attn {
namespace fused_softmax {
namespace scaled_masked_softmax {
int get_batch_per_block_cuda(int query_seq_len, int key_seq_len, int batches, int attn_heads){
return get_batch_per_block(query_seq_len, key_seq_len, batches, attn_heads);
}
torch::Tensor fwd_cuda(
torch::Tensor const& input,
torch::Tensor const& mask,
float scale_factor)
{
// input is a 4d tensor with dimensions [batches, attn_heads, seq_len, seq_len]
const int batches = input.size(0);
const int pad_batches = mask.size(0);
const int attn_heads = input.size(1);
const int query_seq_len = input.size(2);
const int key_seq_len = input.size(3);
TORCH_INTERNAL_ASSERT(key_seq_len <= 2048);
TORCH_INTERNAL_ASSERT(query_seq_len > 1);
TORCH_INTERNAL_ASSERT(pad_batches == 1 || pad_batches == batches);
TORCH_INTERNAL_ASSERT(mask.size(1) == 1);
TORCH_INTERNAL_ASSERT(mask.size(2) == query_seq_len);
TORCH_INTERNAL_ASSERT(mask.size(3) == key_seq_len);
// Output
auto act_options = input.options().requires_grad(false);
torch::Tensor softmax_results =
torch::empty({batches, attn_heads, query_seq_len, key_seq_len}, act_options);
// Softmax Intermediate Result Ptr
void* input_ptr = static_cast<void*>(input.data_ptr());
void* mask_ptr = static_cast<void*>(mask.data_ptr());
void* softmax_results_ptr = static_cast<void*>(softmax_results.data_ptr());
DISPATCH_HALF_AND_BFLOAT(
input.scalar_type(),
"dispatch_scaled_masked_softmax_forward",
dispatch_scaled_masked_softmax_forward<scalar_t, scalar_t, float>(
reinterpret_cast<scalar_t*>(softmax_results_ptr),
reinterpret_cast<const scalar_t*>(input_ptr),
reinterpret_cast<const uint8_t*>(mask_ptr),
scale_factor,
query_seq_len,
key_seq_len,
batches,
attn_heads,
pad_batches);
);
return softmax_results;
}
torch::Tensor bwd_cuda(
torch::Tensor const& output_grads_,
torch::Tensor const& softmax_results_,
float scale_factor) {
auto output_grads = output_grads_.contiguous();
auto softmax_results = softmax_results_.contiguous();
//output grads is a 4d tensor with dimensions [batches, attn_heads, seq_len, seq_len]
const int batches = output_grads.size(0);
const int attn_heads = output_grads.size(1);
const int query_seq_len = output_grads.size(2);
const int key_seq_len = output_grads.size(3);
void* output_grads_ptr = static_cast<void*>(output_grads.data_ptr());
//Softmax Grad
DISPATCH_HALF_AND_BFLOAT(
output_grads_.scalar_type(),
"dispatch_scaled_masked_softmax_backward",
dispatch_scaled_masked_softmax_backward<scalar_t, scalar_t, float>(
reinterpret_cast<scalar_t*>(output_grads_ptr),
reinterpret_cast<scalar_t*>(output_grads_ptr),
reinterpret_cast<scalar_t const*>(softmax_results.data_ptr()),
scale_factor,
query_seq_len,
key_seq_len,
batches,
attn_heads);
);
//backward pass is completely in-place
return output_grads;
}
}
}
}
/* coding=utf-8
* Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <cuda_fp16.h>
#include <torch/extension.h>
#include <vector>
namespace multihead_attn {
namespace fused_softmax {
namespace scaled_upper_triang_masked_softmax {
torch::Tensor fwd_cuda(
torch::Tensor const& input,
float scale_factor);
torch::Tensor bwd_cuda(
torch::Tensor const& output_grads,
torch::Tensor const& softmax_results,
float scale_factor);
torch::Tensor fwd(torch::Tensor const& input, float scale_factor) {
AT_ASSERTM(input.dim() == 3, "expected 3D tensor");
AT_ASSERTM((input.scalar_type() == at::ScalarType::Half) ||
(input.scalar_type() == at::ScalarType::BFloat16),
"Only fp16 and bf16 are supported");
return fwd_cuda(input, scale_factor);
}
torch::Tensor bwd(
torch::Tensor const& output_grads,
torch::Tensor const& softmax_results,
float scale_factor) {
AT_ASSERTM(output_grads.dim() == 3, "expected 3D tensor");
AT_ASSERTM(softmax_results.dim() == 3, "expected 3D tensor");
AT_ASSERTM((output_grads.scalar_type() == at::ScalarType::Half) ||
(output_grads.scalar_type() == at::ScalarType::BFloat16),
"Only fp16 and bf16 are supported");
AT_ASSERTM((softmax_results.scalar_type() == at::ScalarType::Half) ||
(softmax_results.scalar_type() == at::ScalarType::BFloat16),
"Only fp16 and bf16 are supported");
return bwd_cuda(output_grads, softmax_results, scale_factor);
}
} // end namespace scaled_upper_triang_masked_softmax
} // end namespace fused_softmax
} // end namespace multihead_attn
PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
m.def("forward",
&multihead_attn::fused_softmax::scaled_upper_triang_masked_softmax::fwd,
"Self Multihead Attention scaled, time masked softmax -- Forward.");
m.def("backward",
&multihead_attn::fused_softmax::scaled_upper_triang_masked_softmax::bwd,
"Self Multihead Attention scaled, time masked softmax -- Backward.");
}
/* coding=utf-8
* Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#pragma once
#include <assert.h>
#include <cuda_fp16.h>
#include <cfloat>
#include <limits>
#include <stdint.h>
#include <c10/macros/Macros.h>
namespace {
template <typename Datatype, int ELEMENTS_PER_LDG>
__device__ __inline__ void copy_vector(Datatype *dst, const Datatype *src);
template <>
__device__ __inline__ void copy_vector<c10::BFloat16, 1>(c10::BFloat16 *dst, const c10::BFloat16 *src) { *dst = *src; }
template <>
__device__ __inline__ void copy_vector<c10::BFloat16, 4>(c10::BFloat16 *dst, const c10::BFloat16 *src) { *((float2*) dst) = *((float2*) src); }
template <>
__device__ __inline__ void copy_vector<c10::Half, 1>(c10::Half *dst, const c10::Half *src) { *dst = *src; }
template <>
__device__ __inline__ void copy_vector<c10::Half, 4>(c10::Half *dst, const c10::Half *src) { *((float2*) dst) = *((float2*) src); }
template <>
__device__ __inline__ void copy_vector<uint8_t, 1>(uint8_t *dst, const uint8_t *src) { *dst = *src; }
template <>
__device__ __inline__ void copy_vector<uint8_t, 4>(uint8_t *dst, const uint8_t *src) {*((half2*) dst) = *((half2*) src); }
template <typename Datatype, int ELEMENTS_PER_LDG>
__device__ __inline__ void copy_zero_vector(Datatype *dst);
template <>
__device__ __inline__ void copy_zero_vector<c10::BFloat16, 1>(c10::BFloat16 *dst) { *dst = 0.0; }
template <>
__device__ __inline__ void copy_zero_vector<c10::BFloat16, 4>(c10::BFloat16 *dst) { *((float2*) dst) = make_float2(0.0f, 0.0f); }
template <>
__device__ __inline__ void copy_zero_vector<c10::Half, 1>(c10::Half *dst) { *dst = 0.0; }
template <>
__device__ __inline__ void copy_zero_vector<c10::Half, 4>(c10::Half *dst) { *((float2*) dst) = make_float2(0.0f, 0.0f); }
int log2_ceil(int value) {
int log2_value = 0;
while ((1 << log2_value) < value) ++log2_value;
return log2_value;
}
template<typename T>
struct Add {
__device__ __forceinline__ T operator()(T a, T b) const {
return a + b;
}
};
template<typename T>
struct Max {
__device__ __forceinline__ T operator()(T a, T b) const {
return a < b ? b : a;
}
};
template <typename T>
__device__ __forceinline__ T WARP_SHFL_XOR_NATIVE(T value, int laneMask, int width = warpSize, unsigned int mask = 0xffffffff)
{
#if CUDA_VERSION >= 9000
return __shfl_xor_sync(mask, value, laneMask, width);
#else
return __shfl_xor(value, laneMask, width);
#endif
}
template <typename acc_t, int WARP_BATCH, int WARP_SIZE, template<typename> class ReduceOp>
__device__ __forceinline__ void warp_reduce(acc_t* sum) {
ReduceOp<acc_t> r;
#pragma unroll
for (int offset = WARP_SIZE / 2; offset > 0; offset /= 2) {
#pragma unroll
for (int i = 0; i < WARP_BATCH; ++i) {
acc_t b = WARP_SHFL_XOR_NATIVE(sum[i], offset, WARP_SIZE);
sum[i] = r(sum[i], b);
}
}
}
/*
* Extended softmax (from native aten pytorch) with following additional features
* 1) input scaling
* 2) Implicit time (diagonal masking)
*/
template <typename input_t, typename output_t, typename acc_t, int log2_elements>
__global__ void scaled_upper_triang_masked_softmax_warp_forward(
output_t *dst,
const input_t *src,
const acc_t scale,
int micro_batch_size,
int stride,
int element_count)
{
// WARP_SIZE and WARP_BATCH must match the return values batches_per_warp and
// warp_size of method warp_softmax_forward_kernel.
constexpr int next_power_of_two = 1 << log2_elements;
constexpr int WARP_SIZE = (next_power_of_two < C10_WARP_SIZE) ? next_power_of_two : C10_WARP_SIZE;
constexpr int WARP_ITERATIONS = next_power_of_two / WARP_SIZE;
constexpr int WARP_BATCH = (next_power_of_two <= 128) ? 2 : 1;
constexpr int ELEMENTS_PER_LDG_STG = (WARP_ITERATIONS < 4) ? 1 : 4;
int first_batch = (blockDim.y * blockIdx.y + threadIdx.y) * gridDim.x * WARP_BATCH + blockIdx.x;
int local_seq = blockIdx.x + 1;
int warp_iteration_limit = (local_seq + ELEMENTS_PER_LDG_STG * WARP_SIZE - 1)/ WARP_SIZE;
// micro_batch_size might not be a multiple of WARP_BATCH. Check how
// many batches have to computed within this WARP.
int local_batches = micro_batch_size - first_batch;
if (local_batches > WARP_BATCH)
local_batches = WARP_BATCH;
// there might be multiple batches per warp. compute the index within the batch
int local_idx = threadIdx.x;
src += first_batch * stride + ELEMENTS_PER_LDG_STG * local_idx;
dst += first_batch * stride + ELEMENTS_PER_LDG_STG * local_idx;
// load data from global memory
acc_t elements[WARP_BATCH][WARP_ITERATIONS];
input_t temp_data[ELEMENTS_PER_LDG_STG];
#pragma unroll
for (int i = 0; i < WARP_BATCH; ++i) {
int batch_element_count = (i >= local_batches) ? 0 : local_seq;
#pragma unroll
for (int it = 0; it < WARP_ITERATIONS; it+=ELEMENTS_PER_LDG_STG) {
int element_index = ELEMENTS_PER_LDG_STG * local_idx + it * WARP_SIZE;
if (element_index < batch_element_count) {
copy_vector<input_t, ELEMENTS_PER_LDG_STG>(temp_data, src + i*element_count*stride + it*WARP_SIZE);
#pragma unroll
for (int element = 0; element < ELEMENTS_PER_LDG_STG; ++element) {
if ((element_index + element) < batch_element_count) {
elements[i][it+element] = (acc_t)temp_data[element] * scale;
} else {
elements[i][it + element] = -std::numeric_limits<acc_t>::infinity();
}
}
} else {
#pragma unroll
for (int element = 0; element < ELEMENTS_PER_LDG_STG; ++element) {
elements[i][it + element] = -std::numeric_limits<acc_t>::infinity();
}
}
}
}
// compute max_value
acc_t max_value[WARP_BATCH];
#pragma unroll
for (int i = 0; i < WARP_BATCH; ++i) {
max_value[i] = elements[i][0];
#pragma unroll
for (int it = 1; it < WARP_ITERATIONS; ++it) {
max_value[i] = (max_value[i] > elements[i][it]) ? max_value[i] : elements[i][it];
}
}
warp_reduce<acc_t, WARP_BATCH, WARP_SIZE, Max>(max_value);
acc_t sum[WARP_BATCH] { 0.0f };
#pragma unroll
for (int i = 0; i < WARP_BATCH; ++i) {
#pragma unroll
for (int it = 0; it < WARP_ITERATIONS; ++it) {
if (it < warp_iteration_limit) {
elements[i][it] = std::exp((elements[i][it] - max_value[i]));
sum[i] += elements[i][it];
}
}
}
warp_reduce<acc_t, WARP_BATCH, WARP_SIZE, Add>(sum);
// store result
output_t out[ELEMENTS_PER_LDG_STG];
#pragma unroll
for (int i = 0; i < WARP_BATCH; ++i) {
if (i >= local_batches)
break;
#pragma unroll
for (int it = 0; it < WARP_ITERATIONS; it+=ELEMENTS_PER_LDG_STG) {
int element_index = ELEMENTS_PER_LDG_STG * local_idx + it * WARP_SIZE;
if (element_index < local_seq) {
#pragma unroll
for (int element = 0; element < ELEMENTS_PER_LDG_STG; ++element) {
if (element_index + element < local_seq) {
out[element] = elements[i][it + element] / sum[i];
} else {
out[element] = 0;
}
}
copy_vector<output_t, ELEMENTS_PER_LDG_STG>(dst + i * element_count * stride + it * WARP_SIZE, out);
} else if (element_index < element_count) {
copy_zero_vector<output_t, ELEMENTS_PER_LDG_STG>(dst + i * element_count * stride + it * WARP_SIZE);
} else {
break;
}
}
}
}
template <typename input_t, typename output_t, typename acc_t, int log2_elements>
__global__ void scaled_upper_triang_masked_softmax_warp_backward(
output_t *gradInput,
input_t *grad,
const input_t *output,
acc_t scale,
int micro_batch_size,
int stride,
int element_count)
{
// WARP_SIZE and WARP_BATCH must match the return values batches_per_warp and
// warp_size of method warp_softmax_backward_kernel.
constexpr int next_power_of_two = 1 << log2_elements;
constexpr int WARP_SIZE = (next_power_of_two < C10_WARP_SIZE) ? next_power_of_two : C10_WARP_SIZE;
constexpr int WARP_ITERATIONS = next_power_of_two / WARP_SIZE;
constexpr int WARP_BATCH = (next_power_of_two <= 128) ? 2 : 1;
constexpr int ELEMENTS_PER_LDG_STG = (WARP_ITERATIONS < 4) ? 1 : 4;
int first_batch = (blockDim.y * blockIdx.y + threadIdx.y) * gridDim.x * WARP_BATCH + blockIdx.x;
int local_seq = blockIdx.x + 1;
// micro_batch_size might not be a multiple of WARP_BATCH. Check how
// many batches have to computed within this WARP.
int local_batches = micro_batch_size - first_batch;
if (local_batches > WARP_BATCH)
local_batches = WARP_BATCH;
// there might be multiple batches per warp. compute the index within the batch
int local_idx = threadIdx.x;
// the first element to process by the current thread
int thread_offset = first_batch * stride + ELEMENTS_PER_LDG_STG * local_idx;
grad += thread_offset;
output += thread_offset;
gradInput += thread_offset;
// load data from global memory
acc_t grad_reg[WARP_BATCH][WARP_ITERATIONS] { 0.0f };
acc_t output_reg[WARP_BATCH][WARP_ITERATIONS] { 0.0f };
input_t temp_grad[ELEMENTS_PER_LDG_STG];
input_t temp_output[ELEMENTS_PER_LDG_STG];
#pragma unroll
for (int i = 0; i < WARP_BATCH; ++i) {
int batch_element_count = (i >= local_batches) ? 0 : local_seq;
#pragma unroll
for (int it = 0; it < WARP_ITERATIONS; it+=ELEMENTS_PER_LDG_STG) {
int element_index = ELEMENTS_PER_LDG_STG * local_idx + it * WARP_SIZE;
if (element_index < batch_element_count) {
copy_vector<input_t, ELEMENTS_PER_LDG_STG>(temp_grad, grad + i * element_count * stride + it * WARP_SIZE);
copy_vector<input_t, ELEMENTS_PER_LDG_STG>(temp_output, output + i * element_count * stride + it * WARP_SIZE);
#pragma unroll
for (int element = 0; element < ELEMENTS_PER_LDG_STG; ++element) {
if (element_index + element < batch_element_count) {
output_reg[i][it + element] = (acc_t)temp_output[element];
}
}
#pragma unroll
for (int element = 0; element < ELEMENTS_PER_LDG_STG; ++element) {
if (element_index + element < batch_element_count) {
grad_reg[i][it + element] = (acc_t)temp_grad[element] * output_reg[i][it + element];
}
}
}
}
}
acc_t sum[WARP_BATCH];
#pragma unroll
for (int i = 0; i < WARP_BATCH; ++i) {
sum[i] = grad_reg[i][0];
#pragma unroll
for (int it = 1; it < WARP_ITERATIONS; ++it) {
sum[i] += grad_reg[i][it];
}
}
warp_reduce<acc_t, WARP_BATCH, WARP_SIZE, Add>(sum);
// store result
#pragma unroll
for (int i = 0; i < WARP_BATCH; ++i) {
if (i >= local_batches)
break;
#pragma unroll
for (int it = 0; it < WARP_ITERATIONS; it+=ELEMENTS_PER_LDG_STG) {
int element_index = ELEMENTS_PER_LDG_STG * local_idx + it * WARP_SIZE;
if (element_index < element_count) {
// compute gradients
output_t out[ELEMENTS_PER_LDG_STG];
#pragma unroll
for (int element = 0; element < ELEMENTS_PER_LDG_STG; ++element) {
out[element] = (output_t)(scale * (grad_reg[i][it + element] - output_reg[i][it + element] * sum[i]));
}
copy_vector<output_t, ELEMENTS_PER_LDG_STG>(gradInput + i * element_count * stride + it * WARP_SIZE, out);
}
}
}
}
} // end of anonymous namespace
template<typename input_t, typename output_t, typename acc_t>
void dispatch_scaled_upper_triang_masked_softmax_forward(
output_t *dst,
const input_t *src,
const input_t scale,
int softmax_elements,
int softmax_elements_stride,
int attn_batches)
{
TORCH_INTERNAL_ASSERT(softmax_elements >= 0 && softmax_elements <= 2048 );
if (softmax_elements == 0) {
return;
} else {
int log2_elements = log2_ceil(softmax_elements);
const int next_power_of_two = 1 << log2_elements;
int seq_len = softmax_elements;
int batch_count = attn_batches * seq_len;
// This value must match the WARP_SIZE constexpr value computed inside softmax_warp_forward.
int warp_size = (next_power_of_two < C10_WARP_SIZE) ? next_power_of_two : C10_WARP_SIZE;
// This value must match the WARP_BATCH constexpr value computed inside softmax_warp_forward.
int batches_per_warp = (next_power_of_two <= 128) ? 2 : 1;
// use 128 threads per block to maximimize gpu utilization
constexpr int threads_per_block = 128;
int warps_per_block = (threads_per_block / warp_size);
int batches_per_block = warps_per_block * batches_per_warp;
TORCH_INTERNAL_ASSERT(attn_batches % batches_per_block == 0);
int blocks_per_seq = attn_batches / batches_per_block;
dim3 blocks(seq_len, blocks_per_seq, 1);
dim3 threads(warp_size, warps_per_block, 1);
// Launch code would be more elegant if C++ supported FOR CONSTEXPR
switch (log2_elements) {
case 0: // 1
scaled_upper_triang_masked_softmax_warp_forward<input_t, output_t, acc_t, 0>
<<<blocks, threads, 0, at::cuda::getCurrentCUDAStream()>>>(dst, src, scale, batch_count, softmax_elements_stride, softmax_elements);
break;
case 1: // 2
scaled_upper_triang_masked_softmax_warp_forward<input_t, output_t, acc_t, 1>
<<<blocks, threads, 0, at::cuda::getCurrentCUDAStream()>>>(dst, src, scale, batch_count, softmax_elements_stride, softmax_elements);
break;
case 2: // 4
scaled_upper_triang_masked_softmax_warp_forward<input_t, output_t, acc_t, 2>
<<<blocks, threads, 0, at::cuda::getCurrentCUDAStream()>>>(dst, src, scale, batch_count, softmax_elements_stride, softmax_elements);
break;
case 3: // 8
scaled_upper_triang_masked_softmax_warp_forward<input_t, output_t, acc_t, 3>
<<<blocks, threads, 0, at::cuda::getCurrentCUDAStream()>>>(dst, src, scale, batch_count, softmax_elements_stride, softmax_elements);
break;
case 4: // 16
scaled_upper_triang_masked_softmax_warp_forward<input_t, output_t, acc_t, 4>
<<<blocks, threads, 0, at::cuda::getCurrentCUDAStream()>>>(dst, src, scale, batch_count, softmax_elements_stride, softmax_elements);
break;
case 5: // 32
scaled_upper_triang_masked_softmax_warp_forward<input_t, output_t, acc_t, 5>
<<<blocks, threads, 0, at::cuda::getCurrentCUDAStream()>>>(dst, src, scale, batch_count, softmax_elements_stride, softmax_elements);
break;
case 6: // 64
scaled_upper_triang_masked_softmax_warp_forward<input_t, output_t, acc_t, 6>
<<<blocks, threads, 0, at::cuda::getCurrentCUDAStream()>>>(dst, src, scale, batch_count, softmax_elements_stride, softmax_elements);
break;
case 7: // 128
scaled_upper_triang_masked_softmax_warp_forward<input_t, output_t, acc_t, 7>
<<<blocks, threads, 0, at::cuda::getCurrentCUDAStream()>>>(dst, src, scale, batch_count, softmax_elements_stride, softmax_elements);
break;
case 8: // 256
scaled_upper_triang_masked_softmax_warp_forward<input_t, output_t, acc_t, 8>
<<<blocks, threads, 0, at::cuda::getCurrentCUDAStream()>>>(dst, src, scale, batch_count, softmax_elements_stride, softmax_elements);
break;
case 9: // 512
scaled_upper_triang_masked_softmax_warp_forward<input_t, output_t, acc_t, 9>
<<<blocks, threads, 0, at::cuda::getCurrentCUDAStream()>>>(dst, src, scale, batch_count, softmax_elements_stride, softmax_elements);
break;
case 10: // 1024
scaled_upper_triang_masked_softmax_warp_forward<input_t, output_t, acc_t, 10>
<<<blocks, threads, 0, at::cuda::getCurrentCUDAStream()>>>(dst, src, scale, batch_count, softmax_elements_stride, softmax_elements);
break;
case 11: // 2048
scaled_upper_triang_masked_softmax_warp_forward<input_t, output_t, acc_t, 11>
<<<blocks, threads, 0, at::cuda::getCurrentCUDAStream()>>>(dst, src, scale, batch_count, softmax_elements_stride, softmax_elements);
break;
default:
break;
}
}
}
template<typename input_t, typename output_t, typename acc_t>
void dispatch_scaled_upper_triang_masked_softmax_backward(
output_t *grad_input,
input_t *grad,
const input_t *output,
const acc_t scale,
int softmax_elements,
int softmax_elements_stride,
int attn_batches)
{
TORCH_INTERNAL_ASSERT( softmax_elements >= 0 && softmax_elements <= 2048 );
if (softmax_elements == 0) {
return;
} else {
int log2_elements = log2_ceil(softmax_elements);
const int next_power_of_two = 1 << log2_elements;
int seq_len = softmax_elements;
int batch_count = attn_batches * seq_len;
// This value must match the WARP_SIZE constexpr value computed inside softmax_warp_backward.
int warp_size = (next_power_of_two < C10_WARP_SIZE) ? next_power_of_two : C10_WARP_SIZE;
// This value must match the WARP_BATCH constexpr value computed inside softmax_warp_backward.
int batches_per_warp = (next_power_of_two <= 128) ? 2 : 1;
// use 128 threads per block to maximimize gpu utilization
constexpr int threads_per_block = 128;
int warps_per_block = (threads_per_block / warp_size);
int batches_per_block = warps_per_block * batches_per_warp;
TORCH_INTERNAL_ASSERT(attn_batches % batches_per_block == 0);
int blocks_per_seq = attn_batches / batches_per_block;
dim3 blocks(seq_len, blocks_per_seq, 1);
dim3 threads(warp_size, warps_per_block, 1);
// Launch code would be more elegant if C++ supported FOR CONSTEXPR
switch (log2_elements) {
case 0: // 1
scaled_upper_triang_masked_softmax_warp_backward<input_t, output_t, acc_t, 0>
<<<blocks, threads, 0, at::cuda::getCurrentCUDAStream()>>>(grad_input, grad, output, scale, batch_count, softmax_elements_stride, softmax_elements);
break;
case 1: // 2
scaled_upper_triang_masked_softmax_warp_backward<input_t, output_t, acc_t, 1>
<<<blocks, threads, 0, at::cuda::getCurrentCUDAStream()>>>(grad_input, grad, output, scale, batch_count, softmax_elements_stride, softmax_elements);
break;
case 2: // 4
scaled_upper_triang_masked_softmax_warp_backward<input_t, output_t, acc_t, 2>
<<<blocks, threads, 0, at::cuda::getCurrentCUDAStream()>>>(grad_input, grad, output, scale, batch_count, softmax_elements_stride, softmax_elements);
break;
case 3: // 8
scaled_upper_triang_masked_softmax_warp_backward<input_t, output_t, acc_t, 3>
<<<blocks, threads, 0, at::cuda::getCurrentCUDAStream()>>>(grad_input, grad, output, scale, batch_count, softmax_elements_stride, softmax_elements);
break;
case 4: // 16
scaled_upper_triang_masked_softmax_warp_backward<input_t, output_t, acc_t, 4>
<<<blocks, threads, 0, at::cuda::getCurrentCUDAStream()>>>(grad_input, grad, output, scale, batch_count, softmax_elements_stride, softmax_elements);
break;
case 5: // 32
scaled_upper_triang_masked_softmax_warp_backward<input_t, output_t, acc_t, 5>
<<<blocks, threads, 0, at::cuda::getCurrentCUDAStream()>>>(grad_input, grad, output, scale, batch_count, softmax_elements_stride, softmax_elements);
break;
case 6: // 64
scaled_upper_triang_masked_softmax_warp_backward<input_t, output_t, acc_t, 6>
<<<blocks, threads, 0, at::cuda::getCurrentCUDAStream()>>>(grad_input, grad, output, scale, batch_count, softmax_elements_stride, softmax_elements);
break;
case 7: // 128
scaled_upper_triang_masked_softmax_warp_backward<input_t, output_t, acc_t, 7>
<<<blocks, threads, 0, at::cuda::getCurrentCUDAStream()>>>(grad_input, grad, output, scale, batch_count, softmax_elements_stride, softmax_elements);
break;
case 8: // 256
scaled_upper_triang_masked_softmax_warp_backward<input_t, output_t, acc_t, 8>
<<<blocks, threads, 0, at::cuda::getCurrentCUDAStream()>>>(grad_input, grad, output, scale, batch_count, softmax_elements_stride, softmax_elements);
break;
case 9: // 512
scaled_upper_triang_masked_softmax_warp_backward<input_t, output_t, acc_t, 9>
<<<blocks, threads, 0, at::cuda::getCurrentCUDAStream()>>>(grad_input, grad, output, scale, batch_count, softmax_elements_stride, softmax_elements);
break;
case 10: // 1024
scaled_upper_triang_masked_softmax_warp_backward<input_t, output_t, acc_t, 10>
<<<blocks, threads, 0, at::cuda::getCurrentCUDAStream()>>>(grad_input, grad, output, scale, batch_count, softmax_elements_stride, softmax_elements);
break;
case 11: // 2048
scaled_upper_triang_masked_softmax_warp_backward<input_t, output_t, acc_t, 11>
<<<blocks, threads, 0, at::cuda::getCurrentCUDAStream()>>>(grad_input, grad, output, scale, batch_count, softmax_elements_stride, softmax_elements);
break;
default:
break;
}
}
}
/* coding=utf-8
* Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <ATen/ATen.h>
#include <cuda.h>
#include <cuda_runtime.h>
#include <cuda_fp16.h>
#include <cuda_profiler_api.h>
#include <ATen/cuda/CUDAContext.h>
#include <torch/extension.h>
#include "scaled_upper_triang_masked_softmax.h"
#include "type_shim.h"
namespace multihead_attn {
namespace fused_softmax {
namespace scaled_upper_triang_masked_softmax {
torch::Tensor fwd_cuda(
torch::Tensor const& input,
float scale_factor)
{
// input is a 3d tensor with dimensions [attn_batches, seq_len, seq_len]
const int attn_batches = input.size(0);
const int seq_len = input.size(1);
TORCH_INTERNAL_ASSERT(seq_len <= 2048);
// Output
auto act_options = input.options().requires_grad(false);
torch::Tensor softmax_results =
torch::empty({attn_batches, seq_len, seq_len}, act_options);
// Softmax Intermediate Result Ptr
void* input_ptr = static_cast<void*>(input.data_ptr());
void* softmax_results_ptr = static_cast<void*>(softmax_results.data_ptr());
DISPATCH_HALF_AND_BFLOAT(
input.scalar_type(),
"dispatch_scaled_upper_triang_masked_softmax_forward",
dispatch_scaled_upper_triang_masked_softmax_forward<scalar_t, scalar_t, float>(
reinterpret_cast<scalar_t*>(softmax_results_ptr),
reinterpret_cast<const scalar_t*>(input_ptr),
scale_factor,
seq_len,
seq_len,
attn_batches);
);
return softmax_results;
}
torch::Tensor bwd_cuda(
torch::Tensor const& output_grads_,
torch::Tensor const& softmax_results_,
float scale_factor) {
auto output_grads = output_grads_.contiguous();
auto softmax_results = softmax_results_.contiguous();
//output grads is a 3d tensor with dimensions [attn_batches, seq_len, seq_len]
const int attn_batches = output_grads.size(0);
const int seq_len = output_grads.size(1);
TORCH_INTERNAL_ASSERT(output_grads.size(1) == output_grads.size(2));
void* output_grads_ptr = static_cast<void*>(output_grads.data_ptr());
//Softmax Grad
DISPATCH_HALF_AND_BFLOAT(
output_grads_.scalar_type(),
"dispatch_scaled_upper_triang_masked_softmax_backward",
dispatch_scaled_upper_triang_masked_softmax_backward<scalar_t, scalar_t, float>(
reinterpret_cast<scalar_t*>(output_grads_ptr),
reinterpret_cast<scalar_t*>(output_grads_ptr),
reinterpret_cast<scalar_t const*>(softmax_results.data_ptr()),
scale_factor,
seq_len,
seq_len,
attn_batches);
);
//backward pass is completely in-place
return output_grads;
}
}
}
}
......@@ -34,6 +34,32 @@
}
#define DISPATCH_FLOAT_HALF_AND_BFLOAT(TYPE, LEVEL, NAME, ...) \
switch(TYPE) \
{ \
case at::ScalarType::Float: \
{ \
using scalar_t_##LEVEL = float; \
__VA_ARGS__; \
break; \
} \
case at::ScalarType::Half: \
{ \
using scalar_t_##LEVEL = at::Half; \
__VA_ARGS__; \
break; \
} \
case at::ScalarType::BFloat16: \
{ \
using scalar_t_##LEVEL = at::BFloat16; \
__VA_ARGS__; \
break; \
} \
default: \
AT_ERROR(#NAME, " not implemented for '", toString(TYPE), "'"); \
}
#define DISPATCH_FLOAT_HALF_AND_BYTE(TYPE, LEVEL, NAME, ...) \
switch(TYPE) \
{ \
......@@ -106,6 +132,160 @@
}
#define DISPATCH_HALF_AND_BFLOAT(TYPE, NAME, ...) \
switch(TYPE) \
{ \
case at::ScalarType::Half: \
{ \
using scalar_t = at::Half; \
__VA_ARGS__; \
break; \
} \
case at::ScalarType::BFloat16: \
{ \
using scalar_t = at::BFloat16; \
__VA_ARGS__; \
break; \
} \
default: \
AT_ERROR(#NAME, " not implemented for '", toString(TYPE), "'"); \
}
#define DISPATCH_FLOAT_HALF_AND_BFLOAT_INOUT_TYPES(TYPEIN, TYPEOUT, NAME, ...) \
switch(TYPEIN) \
{ \
case at::ScalarType::Float: \
{ \
using scalar_t_in = float; \
switch(TYPEOUT) \
{ \
case at::ScalarType::Float: \
{ \
using scalar_t_out = float; \
__VA_ARGS__; \
break; \
} \
case at::ScalarType::Half: \
{ \
using scalar_t_out = at::Half; \
__VA_ARGS__; \
break; \
} \
case at::ScalarType::BFloat16: \
{ \
using scalar_t_out = at::BFloat16; \
__VA_ARGS__; \
break; \
} \
default: \
AT_ERROR(#NAME, " not implemented for '", toString(TYPEOUT), "'"); \
} \
break; \
} \
case at::ScalarType::Half: \
{ \
using scalar_t_in = at::Half; \
using scalar_t_out = at::Half; \
__VA_ARGS__; \
break; \
} \
case at::ScalarType::BFloat16: \
{ \
using scalar_t_in = at::BFloat16; \
using scalar_t_out = at::BFloat16; \
__VA_ARGS__; \
break; \
} \
default: \
AT_ERROR(#NAME, " not implemented for '", toString(TYPEIN), "'"); \
}
#define DISPATCH_DOUBLE_FLOAT_HALF_AND_BFLOAT_INOUT_TYPES(TYPEIN, TYPEOUT, NAME, ...) \
switch(TYPEIN) \
{ \
case at::ScalarType::Double: \
{ \
using scalar_t_in = double; \
switch(TYPEOUT) \
{ \
case at::ScalarType::Double: \
{ \
using scalar_t_out = double; \
__VA_ARGS__; \
break; \
} \
case at::ScalarType::Float: \
{ \
using scalar_t_out = float; \
__VA_ARGS__; \
break; \
} \
case at::ScalarType::Half: \
{ \
using scalar_t_out = at::Half; \
__VA_ARGS__; \
break; \
} \
case at::ScalarType::BFloat16: \
{ \
using scalar_t_out = at::BFloat16; \
__VA_ARGS__; \
break; \
} \
default: \
AT_ERROR(#NAME, " not implemented for '", toString(TYPEOUT), "'"); \
} \
break; \
} \
case at::ScalarType::Float: \
{ \
using scalar_t_in = float; \
switch(TYPEOUT) \
{ \
case at::ScalarType::Float: \
{ \
using scalar_t_out = float; \
__VA_ARGS__; \
break; \
} \
case at::ScalarType::Half: \
{ \
using scalar_t_out = at::Half; \
__VA_ARGS__; \
break; \
} \
case at::ScalarType::BFloat16: \
{ \
using scalar_t_out = at::BFloat16; \
__VA_ARGS__; \
break; \
} \
default: \
AT_ERROR(#NAME, " not implemented for '", toString(TYPEOUT), "'"); \
} \
break; \
} \
case at::ScalarType::Half: \
{ \
using scalar_t_in = at::Half; \
using scalar_t_out = at::Half; \
__VA_ARGS__; \
break; \
} \
case at::ScalarType::BFloat16: \
{ \
using scalar_t_in = at::BFloat16; \
using scalar_t_out = at::BFloat16; \
__VA_ARGS__; \
break; \
} \
default: \
AT_ERROR(#NAME, " not implemented for '", toString(TYPEIN), "'"); \
}
template<typename T>
__device__ __forceinline__ T reduce_block_into_lanes
(T *x,
......
......@@ -206,6 +206,30 @@ if "--cuda_ext" in sys.argv:
extra_compile_args={'cxx': ['-O3'] + version_dependent_macros,
'nvcc':['-O3'] + version_dependent_macros}))
ext_modules.append(
CUDAExtension(name='scaled_upper_triang_masked_softmax_cuda',
sources=['csrc/megatron/scaled_upper_triang_masked_softmax.cpp',
'csrc/megatron/scaled_upper_triang_masked_softmax_cuda.cu'],
include_dirs=[os.path.join(this_dir, 'csrc')],
extra_compile_args={'cxx': ['-O3'] + version_dependent_macros,
'nvcc':['-O3',
'-U__CUDA_NO_HALF_OPERATORS__',
'-U__CUDA_NO_HALF_CONVERSIONS__',
'--expt-relaxed-constexpr',
'--expt-extended-lambda'] + version_dependent_macros}))
ext_modules.append(
CUDAExtension(name='scaled_masked_softmax_cuda',
sources=['csrc/megatron/scaled_masked_softmax.cpp',
'csrc/megatron/scaled_masked_softmax_cuda.cu'],
include_dirs=[os.path.join(this_dir, 'csrc')],
extra_compile_args={'cxx': ['-O3'] + version_dependent_macros,
'nvcc':['-O3',
'-U__CUDA_NO_HALF_OPERATORS__',
'-U__CUDA_NO_HALF_CONVERSIONS__',
'--expt-relaxed-constexpr',
'--expt-extended-lambda'] + version_dependent_macros}))
if "--bnp" in sys.argv:
sys.argv.remove("--bnp")
......@@ -495,6 +519,7 @@ if "--fast_bottleneck" in sys.argv:
include_dirs=[os.path.join(this_dir, 'apex/contrib/csrc/cudnn-frontend/include')],
extra_compile_args={'cxx': ['-O3',] + version_dependent_macros + generator_flag}))
setup(
name='apex',
version='0.1',
......
import itertools
import unittest
import os
import random
import torch
import apex
from torch.autograd import Variable
class TestFusedLayerNorm(unittest.TestCase):
dtype = torch.float
elementwise_affine = False
normalized_shape = [32, 16]
rtol, atol = None, None
fwd_thresholds = dict(rtol=None, atol=None)
bwd_thresholds = dict(rtol=None, atol=None)
def setUp(self):
# bias and weight are set to 0 and 1 respectively, so no need to copy parameters from cpu module to the gpu one
self.module_cpu_ = apex.normalization.FusedLayerNorm(normalized_shape=[32, 16], elementwise_affine=False).cpu()
self.module_cuda_ = apex.normalization.FusedLayerNorm(normalized_shape=[32, 16], elementwise_affine=False).cuda()
self.module_cpu_ = apex.normalization.FusedLayerNorm(
normalized_shape=self.normalized_shape, elementwise_affine=self.elementwise_affine).cpu()
self.module_cuda_ = apex.normalization.FusedLayerNorm(
normalized_shape=self.normalized_shape, elementwise_affine=self.elementwise_affine).to(device="cuda", dtype=self.dtype)
def _test_same_output(self, batch_size):
def _check_same_output(self, batch_size, contiguous):
torch.cuda.manual_seed(42)
self.input_ = torch.randn((batch_size, *self.module_cpu_.normalized_shape), device="cpu").requires_grad_(True)
self.input_cuda_ = self.input_.cuda().detach().requires_grad_(True)
out_cpu_ = self.module_cpu_(self.input_)
if contiguous:
input_shape = [batch_size] + self.normalized_shape
input_ = torch.randn(input_shape, device="cpu").requires_grad_(True)
input_cuda_ = input_.to(device="cuda", dtype=self.dtype).detach().requires_grad_(True)
self.assertTrue(input_.is_contiguous())
self.assertTrue(input_cuda_.is_contiguous())
else:
input_shape = [batch_size] + self.normalized_shape
input_shape = [batch_size * 3] + [self.normalized_shape[0] * 5, self.normalized_shape[1] * 3]
input_src_ = torch.randn(input_shape, device="cpu")
input_ = input_src_[::3, ::5, ::3].detach().requires_grad_(True)
input_cuda_ = input_src_.to(device="cuda", dtype=self.dtype)[::3, ::5, ::3].detach().requires_grad_(True)
# make sure that tensors are NOT contiguous.
self.assertFalse(input_.is_contiguous())
self.assertFalse(input_cuda_.is_contiguous())
out_cpu_ = self.module_cpu_(input_)
gO = torch.rand_like(out_cpu_)
out_cpu_.backward(gO)
out_cuda_ = self.module_cuda_(self.input_cuda_)
gO = gO.cuda()
out_cuda_ = self.module_cuda_(input_cuda_)
gO = gO.to(device="cuda", dtype=self.dtype)
out_cuda_.backward(gO)
assert out_cpu_.is_cuda == False
assert out_cuda_.is_cuda == True
torch.testing.assert_allclose(out_cpu_, out_cuda_.cpu())
torch.testing.assert_allclose(self.input_.grad, self.input_cuda_.grad.cpu())
self.assertFalse(out_cpu_.is_cuda)
self.assertTrue(out_cuda_.is_cuda)
# TODO (mkozuki): `torch.testing.assert_allclose` is deprecated.
# Use `torch.testing.assert_close`.
# See https://github.com/pytorch/pytorch/issues/61844
torch.testing.assert_allclose(
out_cpu_.to(device="cuda", dtype=self.dtype), out_cuda_, **self.fwd_thresholds)
torch.testing.assert_allclose(
input_.grad.to(device="cuda", dtype=self.dtype), input_cuda_.grad, **self.bwd_thresholds)
def _test_same_output(self, batch_size):
for contiguous in (True, False):
with self.subTest(contiguous=contiguous):
self._check_same_output(batch_size, contiguous)
def test_layer_norm(self):
self._test_same_output(16)
def test_large_batch(self):
self._test_same_output(65536)
class TestFusedLayerNormElemWise(TestFusedLayerNorm):
elementwise_affine = True
class TestFusedLayerNormElemWiseHalf(TestFusedLayerNormElemWise):
dtype = torch.half
def test_large_batch(self):
self.skipTest("Skip to save time")
# Megatron style Layer Norm
class TestFusedLayerNormElemWiseMixedDtypes(TestFusedLayerNorm):
def setUp(self):
self.module_cpu_ = apex.normalization.FusedLayerNorm(normalized_shape=[32, 16], elementwise_affine=True).cpu()
self.module_cuda_ = apex.normalization.FusedLayerNorm(normalized_shape=[32, 16], elementwise_affine=True).cuda()
self.module_cpu_ = apex.normalization.MixedFusedLayerNorm(
normalized_shape=self.normalized_shape, elementwise_affine=True).cpu()
self.module_cuda_ = apex.normalization.MixedFusedLayerNorm(
normalized_shape=self.normalized_shape, elementwise_affine=True).to(device="cuda", dtype=self.dtype)
def test_init_exception(self):
with self.assertRaisesRegex(RuntimeError, "MixedFusedLayerNorm does not support `elementwise_affine = False`"):
apex.normalization.MixedFusedLayerNorm(normalized_shape=[32, 16], elementwise_affine=False).cuda()
class TestFusedLayerNormElemWiseMixedDtypesHalf(TestFusedLayerNormElemWiseMixedDtypes):
dtype = torch.half
def test_large_batch(self):
self.skipTest("Skip to save time")
# NOTE (mkozuki): With the larger threshold values, still flaky.
class TestFusedLayerNormElemWiseMixedDtypesBFloat16(TestFusedLayerNormElemWiseMixedDtypesHalf):
dtype = torch.bfloat16
# NOTE (mkozuki): [BFloat16 Layer Norm flakiness]
# Use thresholds larger than those used in pytorch, see
# https://github.com/pytorch/pytorch/blob/72274e2a2fd55019ec860e1743dbdc5b0c5a5624/torch/testing/_asserts.py#L26
fwd_thresholds = dict(rtol=1.6e-2, atol=3e-4)
bwd_thresholds = dict(rtol=1.6e-2, atol=3e-3)
class TestFusedLayerNormElemWiseBFloat16(TestFusedLayerNormElemWise):
dtype = torch.bfloat16
# See [BFloat16 Layer Norm flakiness]
fwd_thresholds = dict(rtol=1.6e-2, atol=3e-4)
bwd_thresholds = dict(rtol=1.6e-2, atol=3e-3)
def test_large_batch(self):
self.skipTest("Skip to save time")
def _prep_layers(normalized_shape, elementwise_affine, dtype):
native = torch.nn.LayerNorm(
normalized_shape=normalized_shape, elementwise_affine=elementwise_affine
).to(device="cuda", dtype=dtype)
fused = apex.normalization.FusedLayerNorm(
normalized_shape=normalized_shape, elementwise_affine=elementwise_affine
).cuda()
return native, fused
def _prep_inputs(batch_size, normalized_shape, dtype):
shape = (batch_size, *normalized_shape)
fused = torch.randn(shape).cuda().requires_grad_(True)
with torch.no_grad():
native = fused.clone().to(dtype).requires_grad_(True)
return native, fused
autocast_dtypes = (torch.half, torch.bfloat16) if torch.cuda.is_bf16_supported() else (torch.half,)
class TestAutocastFusedLayerNorm(unittest.TestCase):
bf16_fwd_thresholds = dict(rtol=1.6e-2, atol=3e-4)
bf16_bwd_thresholds = dict(rtol=1.6e-2, atol=3e-3)
def setUp(self):
self.batch_size = 16
self.normalized_shape = [32, 16]
def _run_test(self, dtype, elementwise_affine):
native, fused = _prep_layers(self.normalized_shape, elementwise_affine, dtype)
native_x, fused_x = _prep_inputs(self.batch_size, self.normalized_shape, dtype)
expected = native(native_x)
with torch.cuda.amp.autocast(dtype=dtype):
actual = fused(fused_x)
tols = {'rtol': None, 'atol': None} if dtype == torch.half else TestAutocastFusedLayerNorm.bf16_fwd_thresholds
torch.testing.assert_allclose(actual, expected, **tols)
g_native = torch.rand_like(expected)
with torch.no_grad():
g_fused = g_native.clone()
expected.backward(g_native)
actual.backward(g_fused)
tols = {'rtol': None, 'atol': None} if dtype == torch.half else TestAutocastFusedLayerNorm.bf16_bwd_thresholds
torch.testing.assert_allclose(native_x.grad, fused_x.grad, **tols)
def test_autocast(self):
for (dtype, elementwise_affine) in itertools.product(autocast_dtypes, (True, False)):
with self.subTest(f"{dtype}-{elementwise_affine}"):
self._run_test(dtype, elementwise_affine)
"""L0 Tests Runner.
How to run this script?
1. Run all the tests: `python /path/to/apex/tests/L0/run_test.py`
2. Run one of the tests (e.g. fused layer norm):
`python /path/to/apex/tests/L0/run_test.py --include run_fused_layer_norm`
3. Run two or more of the tests (e.g. optimizers and fused layer norm):
`python /path/to/apex/tests/L0/run_test.py --include run_optimizers run_fused_layer_norm`
"""
import argparse
import os
import unittest
import sys
test_dirs = ["run_amp", "run_fp16util", "run_optimizers", "run_fused_layer_norm", "run_pyprof_nvtx", "run_pyprof_data", "run_mlp"]
runner = unittest.TextTestRunner(verbosity=2)
TEST_ROOT = os.path.dirname(os.path.abspath(__file__))
TEST_DIRS = [
"run_amp",
"run_fp16util",
"run_optimizers",
"run_fused_layer_norm",
"run_pyprof_nvtx",
"run_pyprof_data",
"run_mlp",
"run_transformer",
]
DEFAULT_TEST_DIRS = [
"run_optimizers",
"run_fused_layer_norm",
"run_mlp",
"run_transformer",
]
def parse_args():
parser = argparse.ArgumentParser(
description="L0 test runner",
formatter_class=argparse.ArgumentDefaultsHelpFormatter,
)
parser.add_argument(
"--include",
nargs="+",
choices=TEST_DIRS,
default=DEFAULT_TEST_DIRS,
help="select a set of tests to run (defaults to ALL tests).",
)
args, _ = parser.parse_known_args()
return args
def main(args):
runner = unittest.TextTestRunner(verbosity=2)
errcode = 0
for test_dir in args.include:
test_dir = os.path.join(TEST_ROOT, test_dir)
print(test_dir)
suite = unittest.TestLoader().discover(test_dir)
errcode = 0
print("\nExecuting tests from " + test_dir)
for test_dir in test_dirs:
suite = unittest.TestLoader().discover(test_dir)
result = runner.run(suite)
print("\nExecuting tests from " + test_dir)
if not result.wasSuccessful():
errcode = 1
result = runner.run(suite)
sys.exit(errcode)
if not result.wasSuccessful():
errcode = 1
sys.exit(errcode)
if __name__ == '__main__':
args = parse_args()
main(args)
# coding=utf-8
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import torch
import torch.nn.functional as F
from apex.transformer.tensor_parallel.tests.commons import set_random_seed
from apex.transformer.tensor_parallel.tests.commons import IdentityLayer
from apex.transformer.tensor_parallel.tests.commons import print_separator
from apex.transformer.tensor_parallel.tests.commons import initialize_distributed
from apex.transformer.tensor_parallel.tests.commons import TEST_SUCCESS_MESSAGE
from apex.transformer import parallel_state
from apex.transformer import tensor_parallel
from apex.transformer.tensor_parallel.cross_entropy import vocab_parallel_cross_entropy
from apex.transformer.tensor_parallel.tests import global_vars
global_vars.set_global_variables()
def torch_cross_entropy(batch_size, seq_length, vocab_size,
logits_scale, seed):
set_random_seed(seed)
identity = IdentityLayer((batch_size, seq_length, vocab_size),
scale=logits_scale).cuda()
logits = identity()
target = torch.cuda.LongTensor(
size=(batch_size, seq_length)).random_(0, vocab_size)
loss = F.cross_entropy(logits.view(-1, logits.size()[-1]),
target.view(-1),
reduction='none').view_as(target).mean()
loss.backward()
return loss, identity.weight.grad
def tensor_sharded_cross_entropy(batch_size, seq_length, vocab_size, logits_scale, seed):
set_random_seed(seed)
identity = IdentityLayer((batch_size, seq_length, vocab_size), scale=logits_scale).cuda()
logits = identity()
logits_parallel = tensor_parallel.scatter_to_tensor_model_parallel_region(logits)
target = torch.cuda.LongTensor(
size=(batch_size, seq_length)).random_(0, vocab_size)
loss = vocab_parallel_cross_entropy(logits_parallel, target).mean()
loss.backward()
return loss, identity.weight.grad
def test_cross_entropy(tensor_model_parallel_size):
if torch.distributed.get_rank() == 0:
print('> testing cross entropy with model parallel size {} ...'.
format(tensor_model_parallel_size))
parallel_state.initialize_model_parallel(tensor_model_parallel_size)
tensor_model_parallel_size = parallel_state.get_tensor_model_parallel_world_size()
batch_size = 13
seq_length = 17
vocab_size_per_partition = 11
logits_scale = 1000.0
vocab_size = vocab_size_per_partition * tensor_model_parallel_size
seed = 1234
loss_torch, grad_torch = torch_cross_entropy(batch_size, seq_length, vocab_size, logits_scale, seed)
loss_mpu, grad_mpu = tensor_sharded_cross_entropy(batch_size, seq_length, vocab_size, logits_scale, seed)
error = loss_torch.sub_(loss_mpu).abs().max()
print(' max error in loss on global rank {}: {}'.format(
torch.distributed.get_rank(), error))
assert error < 1.0e-6
error = grad_torch.sub_(grad_mpu).abs().max()
print(' max error in grad on global rank {}: {}'.format(
torch.distributed.get_rank(), error))
assert error < 1.0e-6
# Reset groups
parallel_state.destroy_model_parallel()
torch.distributed.barrier()
if torch.distributed.get_rank() == 0:
print(TEST_SUCCESS_MESSAGE)
if __name__ == '__main__':
initialize_distributed()
world_size = torch.distributed.get_world_size()
tensor_model_parallel_size = 1
while tensor_model_parallel_size <= world_size:
print_separator('test cross entropy')
test_cross_entropy(tensor_model_parallel_size)
tensor_model_parallel_size *= 2
# coding=utf-8
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import functools
import operator
import torch
from apex.transformer import parallel_state
from apex.transformer.tensor_parallel import data as data_utils
from apex.transformer.tensor_parallel.tests import global_vars
from apex.transformer.tensor_parallel.tests.commons import print_separator
from apex.transformer.tensor_parallel.tests.commons import initialize_distributed
from apex.transformer.tensor_parallel.tests.commons import TEST_SUCCESS_MESSAGE
global_vars.set_global_variables()
def test_broadcast_data(tensor_model_parallel_size):
if torch.distributed.get_rank() == 0:
print('> testing broadcast_data with model parallel size {} ...'.
format(tensor_model_parallel_size))
parallel_state.initialize_model_parallel(tensor_model_parallel_size)
torch.manual_seed(1234 + parallel_state.get_data_parallel_rank())
tensor_model_parallel_size = parallel_state.get_tensor_model_parallel_world_size()
key_size_t = {
'key1': [7, 11],
'key2': [8, 2, 1],
'key3': [13],
'key4': [5, 1, 2],
'key5': [5, 12],
}
keys = list(key_size_t.keys())
data = {}
data_t = {}
for key in key_size_t:
data[key] = torch.LongTensor(size=key_size_t[key]).random_(0, 1000)
data_t[key] = data[key].clone()
data['keyX'] = torch.FloatTensor(size=(5, )).random_(0, 1000)
data_t['keyX'] = data['keyX'].clone()
if parallel_state.get_tensor_model_parallel_rank() != 0:
data = None
data_utils._check_data_types(keys, data_t, torch.int64)
key_size, key_numel, \
total_numel = data_utils._build_key_size_numel_dictionaries(keys, data)
for key in keys:
assert key_size[key] == key_size_t[key]
total_numel_t = 0
for key in keys:
target_size = functools.reduce(operator.mul, key_size_t[key], 1)
assert key_numel[key] == target_size
total_numel_t += target_size
assert total_numel == total_numel_t
data_b = data_utils.broadcast_data(keys, data, torch.int64)
for key in keys:
tensor = data_t[key].cuda()
assert data_b[key].sub(tensor).abs().max() == 0
# Reset groups
parallel_state.destroy_model_parallel()
torch.distributed.barrier()
if torch.distributed.get_rank() == 0:
print(TEST_SUCCESS_MESSAGE)
if __name__ == '__main__':
initialize_distributed()
world_size = torch.distributed.get_world_size()
tensor_model_parallel_size = 1
while tensor_model_parallel_size <= world_size:
print_separator('test test broadcast data')
test_broadcast_data(tensor_model_parallel_size)
tensor_model_parallel_size *= 2
# coding=utf-8
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import torch
from apex.transformer import parallel_state
from apex.transformer.tensor_parallel.tests import global_vars
from apex.transformer.tensor_parallel.tests.commons import print_separator
from apex.transformer.tensor_parallel.tests.commons import initialize_distributed
from apex.transformer.tensor_parallel.tests.commons import TEST_SUCCESS_MESSAGE
global_vars.set_global_variables()
def test_initialize_model_parallel(tensor_model_parallel_size):
if torch.distributed.get_rank() == 0:
print('> testing initialize_model_parallel with size {} ...'.format(
tensor_model_parallel_size))
tensor_model_parallel_size_ = min(
tensor_model_parallel_size,
torch.distributed.get_world_size(),
)
assert not parallel_state.model_parallel_is_initialized()
parallel_state.initialize_model_parallel(tensor_model_parallel_size_)
assert parallel_state.model_parallel_is_initialized()
# Checks.
def check(group, world_size, rank):
assert world_size == torch.distributed.get_world_size(group=group)
assert rank == torch.distributed.get_rank(group=group)
# Model parallel.
world_size = tensor_model_parallel_size_
rank = torch.distributed.get_rank() % tensor_model_parallel_size_
assert world_size == parallel_state.get_tensor_model_parallel_world_size()
assert rank == parallel_state.get_tensor_model_parallel_rank()
check(parallel_state.get_tensor_model_parallel_group(), world_size, rank)
# Data parallel.
world_size = torch.distributed.get_world_size() // tensor_model_parallel_size_
rank = torch.distributed.get_rank() // tensor_model_parallel_size
assert world_size == parallel_state.get_data_parallel_world_size()
assert rank == parallel_state.get_data_parallel_rank()
check(parallel_state.get_data_parallel_group(), world_size, rank)
# Reset groups
parallel_state.destroy_model_parallel()
torch.distributed.barrier()
if torch.distributed.get_rank() == 0:
print(TEST_SUCCESS_MESSAGE)
def test_get_tensor_model_parallel_src_rank(tensor_model_parallel_size_):
if torch.distributed.get_rank() == 0:
print('> testing get_tensor_model_parallel_src_rank with size {} ...'.format(
tensor_model_parallel_size_))
tensor_model_parallel_size = min(
tensor_model_parallel_size_,
torch.distributed.get_world_size(),
)
assert not parallel_state.model_parallel_is_initialized()
parallel_state.initialize_model_parallel(tensor_model_parallel_size)
assert parallel_state.model_parallel_is_initialized()
# Checks
src_rank = torch.distributed.get_rank() - parallel_state.get_tensor_model_parallel_rank()
assert parallel_state.get_tensor_model_parallel_src_rank() == src_rank
# Reset groups
parallel_state.destroy_model_parallel()
torch.distributed.barrier()
if torch.distributed.get_rank() == 0:
print('>> passed the test :-)')
if __name__ == '__main__':
initialize_distributed()
world_size = torch.distributed.get_world_size()
tensor_model_parallel_size = 1
while tensor_model_parallel_size <= world_size:
print_separator('test initialize model parallel')
test_initialize_model_parallel(tensor_model_parallel_size)
print_separator('test model parallel source rank')
test_get_tensor_model_parallel_src_rank(tensor_model_parallel_size)
tensor_model_parallel_size *= 2
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment