Commit 32157739 authored by rohithkrn's avatar rohithkrn
Browse files

add tests for O4 and O5 opt levels

parent ba2407e2
......@@ -14,11 +14,11 @@ from utils import common_init, HALF, FLOAT,\
ALWAYS_HALF, ALWAYS_FLOAT, MATCH_INPUT
class MyModel(torch.nn.Module):
def __init__(self, unique):
def __init__(self, unique, dtype=torch.float16):
super(MyModel, self).__init__()
self.weight0 = Parameter(unique +
torch.arange(2, device='cuda', dtype=torch.float32))
self.weight1 = Parameter(1. + unique + torch.arange(2, device='cuda', dtype=torch.float16))
self.weight1 = Parameter(1. + unique + torch.arange(2, device='cuda', dtype=dtype))
@staticmethod
def ops(input, weight0, weight1):
......@@ -51,9 +51,13 @@ class TestAddParamGroup(unittest.TestCase):
optimizer.zero_grad()
def test_add_param_group(self):
for opt_level in ("O0", "O1", "O2", "O3"):
for opt_level in ("O0", "O1", "O2", "O3", "O4", "O5"):
for zero_before_add in (True, False):
for try_accumulation in (True, False):
if opt_level in {"O4", "O5"}:
model0 = MyModel(1, torch.bfloat16)
model1 = MyModel(2, torch.bfloat16)
else:
model0 = MyModel(1)
model1 = MyModel(2)
......@@ -89,6 +93,10 @@ class TestAddParamGroup(unittest.TestCase):
[param.data.clone() for param in model1.parameters()]
for how_to_zero in "none", "model", "optimizer":
if opt_level in {"O4", "O5"}:
model0 = MyModel(1, torch.bfloat16)
model1 = MyModel(2, torch.bfloat16)
else:
model0 = MyModel(1)
model1 = MyModel(2)
......@@ -139,6 +147,9 @@ class TestAddParamGroup(unittest.TestCase):
[param.data.clone() for param in model1.parameters()]
for reference, final in zip(reference_params, final_params):
# TODO: remove the conversion once allclose supports bfloat16 type.
if final.dtype == torch.bfloat16:
final = final.float()
self.assertTrue(torch.allclose(reference.to(final.dtype), final),
"opt_level = {}, how_to_zero = {}, zero_before_add = {}".format(
opt_level, how_to_zero, zero_before_add))
......
......@@ -67,12 +67,12 @@ class TestCache(unittest.TestCase):
def tearDown(self):
pass
def train_eval_train_test(self, module, t):
def train_eval_train_test(self, module, t, opt_level):
model = module(t).cuda()
optimizer = torch.optim.SGD(model.parameters(), lr=1.0)
_amp_state.allow_incoming_model_not_fp32 = True
model, optimizer = amp.initialize(model, optimizer, opt_level="O1", verbosity=0)
model, optimizer = amp.initialize(model, optimizer, opt_level=opt_level, verbosity=0)
_amp_state.allow_incoming_model_not_fp32 = False
def training_step():
......@@ -93,6 +93,8 @@ class TestCache(unittest.TestCase):
# but I'm keeping this in case we want different tolerances for fp16 and fp32 checks.
if model.weight.grad.type() == "torch.cuda.HalfTensor":
self.assertTrue(torch.allclose(model.weight.grad.float(), reference_grad))
elif model.weight.grad.type() == "torch.cuda.BFloat16Tensor":
self.assertTrue(torch.allclose(model.weight.grad.float(), reference_grad))
elif model.weight.grad.type() == "torch.cuda.FloatTensor":
self.assertTrue(torch.allclose(model.weight.grad.float(), reference_grad))
else:
......@@ -115,22 +117,41 @@ class TestCache(unittest.TestCase):
# I could easily have these as a set of for loops in a single test,
# instead of going for granularity.
def test_whitelist_module_fp16_weight(self):
self.train_eval_train_test(WhitelistModule, torch.float16)
self.train_eval_train_test(WhitelistModule, torch.float16, "O1")
def test_whitelist_module_fp32_weight(self):
self.train_eval_train_test(WhitelistModule, torch.float32)
self.train_eval_train_test(WhitelistModule, torch.float32, "O1")
def test_blacklist_module_fp16_weight(self):
self.train_eval_train_test(BlacklistModule, torch.float16)
self.train_eval_train_test(BlacklistModule, torch.float16, "O1")
def test_blacklist_module_fp32_weight(self):
self.train_eval_train_test(BlacklistModule, torch.float32)
self.train_eval_train_test(BlacklistModule, torch.float32, "O1")
def test_promote_module_fp16_weight(self):
self.train_eval_train_test(PromoteModule, torch.float16)
self.train_eval_train_test(PromoteModule, torch.float16, "O1")
def test_promote_module_fp32_weight(self):
self.train_eval_train_test(PromoteModule, torch.float32, "O1")
# opt_level = O4
def test_whitelist_module_bfp16_weight(self):
self.train_eval_train_test(WhitelistModule, torch.bfloat16, "O4")
def test_whitelist_module_fp32_weight(self):
self.train_eval_train_test(WhitelistModule, torch.float32, "O4")
def test_blacklist_module_bfp16_weight(self):
self.train_eval_train_test(BlacklistModule, torch.bfloat16, "O4")
def test_blacklist_module_fp32_weight(self):
self.train_eval_train_test(BlacklistModule, torch.float32, "O4")
def test_promote_module_bfp16_weight(self):
self.train_eval_train_test(PromoteModule, torch.bfloat16, "O4")
def test_promote_module_fp32_weight(self):
self.train_eval_train_test(PromoteModule, torch.float32)
self.train_eval_train_test(PromoteModule, torch.float32, "O4")
if __name__ == '__main__':
......
......@@ -28,7 +28,7 @@ class MyModel(torch.nn.Module):
class TestCheckpointing(unittest.TestCase):
def setUp(self):
self.initial_lr = 1e-3
self.test_opt_levels = ("O0", "O1", "O2", "O3")
self.test_opt_levels = ("O0", "O1", "O2", "O3", "O4", "O5")
def seed(self):
torch.manual_seed(2809)
......@@ -236,6 +236,7 @@ class TestCheckpointing(unittest.TestCase):
state_dict = model.state_dict()
for key in state_dict:
self.assertFalse('Half' in state_dict[key].type())
self.assertFalse('BFloat16' in state_dict[key].type())
# Check, if model is still trainable
# Create dummy data
......
......@@ -69,7 +69,10 @@ class TestMultiTensorAxpby(unittest.TestCase):
applier(multi_tensor_axpby, self.overflow_buf, [x_list, y_list, out_list], self.a, self.b, -1)
self.assertTrue(all([torch.allclose(out, self.ref.to(out_type)) for out in out_list]),
# TODO: Remove this workaround for bfloat16 after torch.allcose() support bfloat16
if out_type == torch.bfloat16:
out_list = [out.float() for out in out_list]
self.assertTrue(all([torch.allclose(out, self.ref.to(out.dtype)) for out in out_list]),
msg="{} {} {} {} {} {} {}".format(sizea, sizeb, repeat_tensors,
x_type, y_type, out_type, inplace))
self.assertTrue(self.overflow_buf.item() == 0,
......@@ -119,9 +122,9 @@ class TestMultiTensorAxpby(unittest.TestCase):
for sizea, sizeb in input_size_pairs:
for applier in appliers:
for repeat in repeat_tensors:
for x_type in (torch.float32, torch.float16):
for y_type in (torch.float32, torch.float16):
for out_type in (torch.float32, torch.float16):
for x_type in (torch.float32, torch.float16, torch.bfloat16):
for y_type in (torch.float32, torch.float16, torch.bfloat16):
for out_type in (torch.float32, torch.float16, torch.bfloat16):
for inplace in (True, False):
if inplace is True and (y_type is not out_type):
continue
......
......@@ -49,7 +49,10 @@ class TestMultiTensorScale(unittest.TestCase):
applier(multi_tensor_scale, self.overflow_buf, [in_list, out_list], 1./self.scale)
self.assertTrue(all([torch.allclose(out, self.ref.to(out_type)) for out in out_list]))
# TODO: Remove this workaround for bfloat16 after torch.allcose() support bfloat16
if out_type == torch.bfloat16:
out_list = [out.float() for out in out_list]
self.assertTrue(all([torch.allclose(out, self.ref.to(out.dtype)) for out in out_list]))
self.assertTrue(self.overflow_buf.item() == 0)
def find_inf(self, sizea, sizeb, applier, repeat_tensors, in_type, out_type, t, ind, val, inplace=False):
......@@ -106,8 +109,8 @@ class TestMultiTensorScale(unittest.TestCase):
for sizea, sizeb in input_size_pairs:
for applier in appliers:
for repeat in repeat_tensors:
for in_type in (torch.float32, torch.float16):
for out_type in (torch.float32, torch.float16):
for in_type in (torch.float32, torch.float16, torch.bfloat16):
for out_type in (torch.float32, torch.float16, torch.bfloat16):
for inplace in (True, False):
if inplace is True and (out_type is not in_type):
continue
......
......@@ -7,18 +7,18 @@ import torch
from torch import nn
import torch.nn.functional as F
from utils import common_init, HALF, FLOAT, DTYPES
from utils import common_init, HALF, FLOAT, DTYPES, DTYPES2, MATCH_INPUT
class TestPromotion(unittest.TestCase):
def setUp(self):
self.handle = amp.init(enabled=True)
common_init(self)
def tearDown(self):
self.handle._deactivate()
def run_binary_promote_test(self, fns, input_shape, x_inplace=False):
type_pairs = it.product(DTYPES, DTYPES)
class _TestPromotion(unittest.TestCase):
def run_binary_promote_test(self, fns, input_shape, lp_type, x_inplace=False):
if lp_type == torch.half:
dtypes = DTYPES
elif lp_type == torch.bfloat16:
dtypes = DTYPES2
else:
raise RuntimeError("Creating test class with invalid low_precision type. \
Supported types are torch.half and torch.bfloat16")
type_pairs = it.product(dtypes, dtypes)
for fn, (xtype, ytype) in it.product(fns, type_pairs):
x = torch.randn(input_shape, dtype=xtype).requires_grad_()
x_leaf = x
......@@ -35,41 +35,78 @@ class TestPromotion(unittest.TestCase):
if xtype == torch.float or ytype == torch.float:
self.assertEqual(out.type(), FLOAT)
else:
self.assertEqual(out.type(), HALF)
self.assertEqual(out.type(), MATCH_INPUT[lp_type])
out.float().sum().backward()
self.assertEqual(x_leaf.grad.dtype, xtype)
def _test_cat_matches_widest(self, lp_type):
shape = self.b
ys = [torch.randn(shape, dtype=lp_type) for _ in range(5)]
x_float = torch.randn(shape)
out = torch.cat(ys + [x_float])
self.assertEqual(out.type(), FLOAT)
x_lp = torch.randn(shape, dtype=lp_type)
out = torch.cat(ys + [x_lp])
self.assertEqual(out.type(), MATCH_INPUT[lp_type])
def _test_inplace_exp_is_error_for_lp(self, lp_type):
xs = torch.randn(self.b)
xs.exp_()
self.assertEqual(xs.type(), FLOAT)
xs = torch.randn(self.b, dtype=lp_type)
with self.assertRaises(NotImplementedError):
xs.exp_()
class TestPromotionHalf(_TestPromotion):
def setUp(self):
self.handle = amp.init(enabled=True, patch_type=torch.half)
common_init(self)
def tearDown(self):
self.handle._deactivate()
def test_atan2_matches_widest(self):
fns = [lambda x, y : torch.atan2(x, y),
lambda x, y : x.atan2(y)]
self.run_binary_promote_test(fns, (self.b,))
self.run_binary_promote_test(fns, (self.b,), torch.half)
def test_mul_matches_widest(self):
fns = [lambda x, y : torch.mul(x, y),
lambda x, y: x.mul(y)]
self.run_binary_promote_test(fns, (self.b,))
self.run_binary_promote_test(fns, (self.b,), torch.half)
def test_cat_matches_widest(self):
shape = self.b
ys = [torch.randn(shape, dtype=torch.half) for _ in range(5)]
x_float = torch.randn(shape)
out = torch.cat(ys + [x_float])
self.assertEqual(out.type(), FLOAT)
x_half = torch.randn(shape, dtype=torch.half)
out = torch.cat(ys + [x_half])
self.assertEqual(out.type(), HALF)
self._test_cat_matches_widest(torch.half)
def test_inplace_exp_is_error_for_half(self):
xs = torch.randn(self.b)
xs.exp_()
self.assertEqual(xs.type(), FLOAT)
xs = torch.randn(self.b, dtype=torch.half)
with self.assertRaises(NotImplementedError):
xs.exp_()
self._test_inplace_exp_is_error_for_lp(torch.half)
def test_inplace_add_matches_self(self):
fn = lambda x, y: x.add_(y)
self.run_binary_promote_test([fn], (self.b,), torch.half, x_inplace=True)
class TestPromotionBFloat16(_TestPromotion):
def setUp(self):
self.handle = amp.init(enabled=True, patch_type=torch.bfloat16)
common_init(self)
def tearDown(self):
self.handle._deactivate()
def test_mul_matches_widest(self):
fns = [lambda x, y : torch.mul(x, y),
lambda x, y: x.mul(y)]
self.run_binary_promote_test(fns, (self.b,), torch.bfloat16)
def test_cat_matches_widest(self):
self._test_cat_matches_widest(torch.bfloat16)
def test_inplace_exp_is_error_for_bfloat16(self):
self._test_inplace_exp_is_error_for_lp(torch.bfloat16)
def test_inplace_add_matches_self(self):
fn = lambda x, y: x.add_(y)
self.run_binary_promote_test([fn], (self.b,), x_inplace=True)
self.run_binary_promote_test([fn], (self.b,), torch.bfloat16, x_inplace=True)
if __name__ == '__main__':
unittest.main()
......@@ -6,6 +6,8 @@ BFLOAT16 = 'torch.cuda.BFloat16Tensor'
DTYPES = [torch.half, torch.float]
DTYPES2 = [torch.bfloat16, torch.float]
ALWAYS_HALF = {torch.float: HALF,
torch.half: HALF}
ALWAYS_BFLOAT16 = {torch.bfloat16: BFLOAT16,
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment