# Copyright 2024 Bytedance Ltd. and/or its affiliates # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from transformers import PreTrainedTokenizer from verl import DataProto from verl.utils.reward_score import math_compute_score, r1v_compute_score class CustomRewardManager: def __init__(self, tokenizer: PreTrainedTokenizer, num_examine: int, compute_score: str): self.tokenizer = tokenizer self.num_examine = num_examine if compute_score == "math": self.compute_score = math_compute_score elif compute_score == "r1v": self.compute_score = r1v_compute_score else: raise NotImplementedError() def __call__(self, data: DataProto) -> torch.Tensor: reward_tensor = torch.zeros_like(data.batch["responses"], dtype=torch.float32) already_print = 0 for i in range(len(data)): data_item = data[i] # DataProtoItem prompt_ids = data_item.batch["prompts"] prompt_length = prompt_ids.shape[-1] valid_prompt_length = data_item.batch["attention_mask"][:prompt_length].sum() valid_prompt_ids = prompt_ids[-valid_prompt_length:] response_ids = data_item.batch["responses"] valid_response_length = data_item.batch["attention_mask"][prompt_length:].sum() valid_response_ids = response_ids[:valid_response_length] # decode prompt_str = self.tokenizer.decode(valid_prompt_ids, skip_special_tokens=True) response_str = self.tokenizer.decode(valid_response_ids, skip_special_tokens=True) ground_truth = data_item.non_tensor_batch["answer"] score = self.compute_score(response_str, ground_truth) reward_tensor[i, valid_response_length - 1] = score if already_print < self.num_examine: already_print += 1 print("[prompt]", prompt_str) print("[response]", response_str) print("[ground_truth]", ground_truth) print("[score]", score) return reward_tensor