# Copyright 2024 Bytedance Ltd. and/or its affiliates # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Implement Actor """ import os from collections import defaultdict from typing import Any, Dict, Optional, Tuple import torch from torch import nn from torch.distributed.fsdp import FullyShardedDataParallel as FSDP from tqdm import tqdm import verl.utils.torch_functional as verl_F from verl import DataProto from verl.trainer import core_algos from verl.utils.py_functional import append_to_dict from verl.utils.torch_functional import logprobs_from_logits, masked_mean from verl.workers.actor.base import BasePPOActor from verl.workers.actor.config import ActorConfig __all__ = ["DataParallelPPOActor"] class DataParallelPPOActor(BasePPOActor): def __init__( self, config: ActorConfig, actor_module: nn.Module, actor_optimizer: Optional[torch.optim.Optimizer] = None, ): """ When optimizer is None, it is Reference Policy """ super().__init__(config) self.rank = int(os.getenv("RANK", "0")) self.actor_module = actor_module self.actor_optimizer = actor_optimizer self.compute_entropy_from_logits = torch.compile(verl_F.entropy_from_logits, dynamic=True) def _forward_micro_batch( self, micro_batch: Dict[str, torch.Tensor], temperature: float ) -> Tuple[torch.Tensor, torch.Tensor]: """ Returns: entropy: # (bs, response_len) log_probs: # (bs, response_len) """ input_ids = micro_batch["input_ids"] attention_mask = micro_batch["attention_mask"] position_ids = micro_batch["position_ids"] responses = micro_batch["responses"] response_length = responses.size(-1) if position_ids.dim() == 3: # qwen2vl mrope position_ids = position_ids.transpose(0, 1) # (bsz, 3, seqlen) -> (3, bsz, seqlen) vision_inputs = {} if "pixel_values" in micro_batch: vision_inputs["pixel_values"] = torch.cat(micro_batch["pixel_values"], dim=0) vision_inputs["image_grid_thw"] = torch.cat(micro_batch["image_grid_thw"], dim=0) if self.config.padding_free: # TODO (yaowei): preprocess data for padding_free and ulysses raise NotImplementedError else: output = self.actor_module( input_ids=input_ids, attention_mask=attention_mask, position_ids=position_ids, **vision_inputs, use_cache=False, ) logits: torch.Tensor = output.logits logits.div_(temperature) logits = logits[:, -response_length - 1 : -1, :] # (bsz, response_length, vocab_size) log_probs = logprobs_from_logits(logits, responses) # (bsz, response_length) entropy = verl_F.entropy_from_logits(logits) # (bsz, response_length) return entropy, log_probs def _optimizer_step(self) -> torch.Tensor: if isinstance(self.actor_module, FSDP): grad_norm = self.actor_module.clip_grad_norm_(self.config.max_grad_norm) else: grad_norm = nn.utils.clip_grad_norm_(self.actor_module.parameters(), max_norm=self.config.max_grad_norm) self.actor_optimizer.step() return grad_norm @torch.no_grad() def compute_log_prob(self, data: DataProto) -> torch.Tensor: """Compute the log probability of the responses given input_ids, attention_mask and position_ids Args: data (DataProto): a DataProto containing keys ``input_ids``: tensor of shape [batch_size, sequence_length]. torch.int64. Note that input_ids is the concatenation of prompt and response. Note that ``sequence_length = prompt_length + response_length``. ``attention_mask``: tensor of shape [batch_size, sequence_length]. torch.int64. ``position_ids``: tensor of shape [batch_size, sequence_length]. torch.int64. ``responses``: tensor of shape [batch_size, response_length]. torch.int64. Returns: torch.Tensor: the log_prob tensor """ self.actor_module.eval() temperature = data.meta_info["temperature"] select_keys = ["responses", "input_ids", "attention_mask", "position_ids"] if "pixel_values" in data.non_tensor_batch.keys(): non_tensor_select_keys = ["pixel_values", "image_grid_thw"] else: non_tensor_select_keys = None micro_batches = data.select(select_keys, non_tensor_select_keys).split( self.config.micro_batch_size_per_device_for_experience ) log_probs_lst = [] for micro_batch in tqdm(micro_batches, desc="Compute log probs", disable=(self.rank != 0)): micro_batch.to("cuda") model_inputs = {**micro_batch.batch, **micro_batch.non_tensor_batch} _, log_probs = self._forward_micro_batch(model_inputs, temperature=temperature) log_probs_lst.append(log_probs) log_probs = torch.concat(log_probs_lst, dim=0) return log_probs def update_policy(self, data: DataProto) -> Dict[str, Any]: self.actor_module.train() temperature = data.meta_info["temperature"] # temperature must be in the data.meta_info to avoid slient error select_keys = ["responses", "input_ids", "attention_mask", "position_ids", "old_log_probs", "advantages"] if self.config.use_kl_loss: select_keys.append("ref_log_prob") if "pixel_values" in data.non_tensor_batch.keys(): non_tensor_select_keys = ["pixel_values", "image_grid_thw"] else: non_tensor_select_keys = None # TODO (yaowei): support ppo epochs # Split to make minibatch iterator for updating the actor # See PPO paper for details. https://arxiv.org/abs/1707.06347 mini_batches = data.select(select_keys, non_tensor_select_keys).split(self.config.global_batch_size_per_device) metrics = defaultdict(list) n = len(mini_batches) for i, mini_batch in enumerate(mini_batches): gradient_accumulation = ( self.config.global_batch_size_per_device // self.config.micro_batch_size_per_device_for_update ) micro_batches = mini_batch.split(self.config.micro_batch_size_per_device_for_update) self.actor_optimizer.zero_grad() for micro_batch in tqdm(micro_batches, desc=f"Update policy [{i + 1}/{n}]", disable=(self.rank != 0)): micro_batch.to("cuda") model_inputs = {**micro_batch.batch, **micro_batch.non_tensor_batch} responses = model_inputs["responses"] response_length = responses.size(1) attention_mask = model_inputs["attention_mask"] response_mask = attention_mask[:, -response_length:] old_log_prob = model_inputs["old_log_probs"] advantages = model_inputs["advantages"] clip_ratio = self.config.clip_ratio entropy_coeff = self.config.entropy_coeff # all return: (bsz, response_length) entropy, log_prob = self._forward_micro_batch(model_inputs, temperature=temperature) pg_loss, pg_clipfrac, ppo_kl = core_algos.compute_policy_loss( old_log_prob=old_log_prob, log_prob=log_prob, advantages=advantages, eos_mask=response_mask, cliprange=clip_ratio, ) # compute entropy loss from entropy entropy_loss = verl_F.masked_mean(entropy, response_mask) # compute policy loss policy_loss = pg_loss - entropy_loss * entropy_coeff if self.config.use_kl_loss: ref_log_prob = model_inputs["ref_log_prob"] # compute kl loss kld = core_algos.kl_penalty( logprob=log_prob, ref_logprob=ref_log_prob, kl_penalty=self.config.kl_loss_type, ) kl_loss = masked_mean(kld, response_mask) policy_loss = policy_loss + kl_loss * self.config.kl_loss_coef metrics["actor/kl_loss"] = kl_loss.detach().item() metrics["actor/kl_coef"] = self.config.kl_loss_coef loss = policy_loss / gradient_accumulation loss.backward() batch_metrics = { "actor/entropy_loss": entropy_loss.detach().item(), "actor/pg_loss": pg_loss.detach().item(), "actor/pg_clipfrac": pg_clipfrac.detach().item(), "actor/ppo_kl": ppo_kl.detach().item(), } append_to_dict(metrics, batch_metrics) grad_norm = self._optimizer_step() append_to_dict(metrics, {"actor/grad_norm": grad_norm.detach().item()}) self.actor_optimizer.zero_grad() return metrics