# Copyright 2024 Bytedance Ltd. and/or its affiliates # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from collections import defaultdict from typing import Any, Callable, Dict, Tuple, TypedDict import torch from transformers import PreTrainedTokenizer from ...protocol import DataProto from ...utils.reward_score import math_compute_score, r1v_compute_score class RewardScore(TypedDict): overall: float format: float accuracy: float class CustomRewardManager: def __init__(self, tokenizer: PreTrainedTokenizer, compute_score: str): self.tokenizer = tokenizer if compute_score == "math": self.compute_score: Callable[[str, str], RewardScore] = math_compute_score elif compute_score == "r1v": self.compute_score: Callable[[str, str], RewardScore] = r1v_compute_score else: raise NotImplementedError() def __call__(self, data: DataProto) -> Tuple[torch.Tensor, Dict[str, Any]]: reward_tensor = torch.zeros_like(data.batch["responses"], dtype=torch.float32) reward_metrics = defaultdict(list) for i in range(len(data)): data_item = data[i] # DataProtoItem response_ids = data_item.batch["responses"] response_mask = data_item.batch["response_mask"] valid_response_length = response_mask.sum() valid_response_ids = response_ids[:valid_response_length] response_str = self.tokenizer.decode(valid_response_ids, skip_special_tokens=True) ground_truth = data_item.non_tensor_batch["ground_truth"] score = self.compute_score(response_str, ground_truth) reward_tensor[i, valid_response_length - 1] = score["overall"] for key, value in score.items(): reward_metrics[key].append(value) return reward_tensor, reward_metrics