# Copyright 2024 Bytedance Ltd. and/or its affiliates # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import random import re import shutil import tempfile from abc import ABC, abstractmethod from typing import Any, Dict, Optional, Union import numpy as np import torch import torch.distributed as dist from filelock import FileLock from torch.distributed.fsdp import FullyShardedDataParallel as FSDP from transformers import PreTrainedTokenizer, ProcessorMixin CHECKPOINT_TRACKER = "latest_global_step.txt" class BaseCheckpointManager(ABC): """ A checkpoint manager that saves and loads - model - optimizer - lr_scheduler - extra_states in a SPMD way. We save - sharded model states and optimizer states - full lr_scheduler states - huggingface tokenizer and config for ckpt merge """ def __init__( self, model: FSDP, optimizer: torch.optim.Optimizer, lr_scheduler: torch.optim.lr_scheduler.LRScheduler, processing_class: Union[PreTrainedTokenizer, ProcessorMixin], ): self.model = model self.optimizer = optimizer self.lr_scheduler = lr_scheduler self.processing_class = processing_class assert isinstance(self.model, FSDP) self.rank = dist.get_rank() self.world_size = dist.get_world_size() @abstractmethod def load_checkpoint(self, *args, **kwargs): raise NotImplementedError @abstractmethod def save_checkpoint(self, *args, **kwargs): raise NotImplementedError @staticmethod def local_mkdir(path: str) -> str: if not os.path.isabs(path): working_dir = os.getcwd() path = os.path.join(working_dir, path) # Using hash value of path as lock file name to avoid long file name lock_filename = f"ckpt_{hash(path) & 0xFFFFFFFF:08x}.lock" lock_path = os.path.join(tempfile.gettempdir(), lock_filename) try: with FileLock(lock_path, timeout=60): os.makedirs(path, exist_ok=True) except Exception as e: print(f"Warning: Failed to acquire lock for {path}: {e}") os.makedirs(path, exist_ok=True) # even if the lock is not acquired, try to create the directory return path @staticmethod def get_rng_state() -> Dict[str, Any]: rng_state = { "cpu": torch.get_rng_state(), "cuda": torch.cuda.get_rng_state(), "numpy": np.random.get_state(), "random": random.getstate(), } return rng_state @staticmethod def load_rng_state(rng_state: Dict[str, Any]): torch.set_rng_state(rng_state["cpu"]) torch.cuda.set_rng_state(rng_state["cuda"]) np.random.set_state(rng_state["numpy"]) random.setstate(rng_state["random"]) def find_latest_ckpt_path(path: Optional[str] = None, directory_format: str = "global_step_{}") -> Optional[str]: if path is None: return None tracker_file = get_checkpoint_tracker_filename(path) if not os.path.exists(tracker_file): print("Checkpoint tracker file does not exist: %s", tracker_file) return None with open(tracker_file, "rb") as f: iteration = int(f.read().decode()) ckpt_path = os.path.join(path, directory_format.format(iteration)) if not os.path.exists(ckpt_path): print("Checkpoint does not exist: %s", ckpt_path) return None print("Found checkpoint: %s", ckpt_path) return ckpt_path def get_checkpoint_tracker_filename(root_path: str) -> str: """ Tracker file rescords the latest chckpoint during training to restart from. """ return os.path.join(root_path, CHECKPOINT_TRACKER) def remove_obsolete_ckpt(path: str, global_step: int, save_limit: int = -1, directory_format: str = "global_step_{}"): """ Remove the obsolete checkpoints that exceed the save_limit. """ if save_limit <= 0: return if not os.path.exists(path): return pattern = re.escape(directory_format).replace(r"\{\}", r"(\d+)") ckpt_folders = [] for folder in os.listdir(path): if match := re.match(pattern, folder): step = int(match.group(1)) if step < global_step: ckpt_folders.append((step, folder)) ckpt_folders.sort(reverse=True) for _, folder in ckpt_folders[save_limit - 1 :]: folder_path = os.path.join(path, folder) shutil.rmtree(folder_path, ignore_errors=True) print(f"Removed obsolete checkpoint: {folder_path}")