Commit f92481f0 authored by chenych's avatar chenych
Browse files

First commit.

parent 7121d0b0
Pipeline #2435 failed with stages
in 0 seconds
# Copyright 2024 Bytedance Ltd. and/or its affiliates
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
PPO config
"""
import os
from dataclasses import asdict, dataclass, field, fields, is_dataclass
from typing import Optional, Tuple
from verl.workers.config import WorkerConfig
def recursive_post_init(dataclass_obj):
if hasattr(dataclass_obj, "post_init"):
dataclass_obj.post_init()
for attr in fields(dataclass_obj):
if is_dataclass(getattr(dataclass_obj, attr.name)):
recursive_post_init(getattr(dataclass_obj, attr.name))
@dataclass
class DataConfig:
train_files: str = ""
val_files: str = ""
prompt_key: str = "prompt"
max_prompt_length: int = 512
max_response_length: int = 512
rollout_batch_size: int = 512
return_raw_input_ids: bool = False
return_raw_prompt: bool = False
system_prompt: str = r"Please reason step by step, and put your final answer within \boxed{}."
shuffle: bool = True
seed: int = 1
max_pixels: int = 4194304
min_pixels: int = 262144
@dataclass
class AlgorithmConfig:
gamma: float = 1.0
lam: float = 1.0
adv_estimator: str = "gae"
kl_penalty: str = "kl"
kl_type: str = "fixed"
kl_coef: float = 1e-3
kl_horizon: float = 0.0
kl_target: float = 0.0
@dataclass
class TrainerConfig:
total_episodes: int = 10
max_steps: Optional[int] = None
project_name: str = "easy_r1"
experiment_name: str = "demo"
logger: Tuple[str] = ("console", "wandb")
val_generations_to_log_to_wandb: int = 0
nnodes: int = 1
n_gpus_per_node: int = 8
save_freq: int = -1
load_checkpoint_path: Optional[str] = None
val_before_train: bool = True
val_only: bool = False
test_freq: int = -1
critic_warmup: int = 0
remove_previous_ckpt: bool = False
del_local_ckpt_after_load: bool = False
save_checkpoint_path: Optional[str] = None
def post_init(self):
if self.save_checkpoint_path is None:
self.save_checkpoint_path = os.path.join("checkpoints", self.project_name, self.experiment_name)
@dataclass
class PPOConfig:
data: DataConfig = field(default_factory=DataConfig)
worker: WorkerConfig = field(default_factory=WorkerConfig)
algorithm: AlgorithmConfig = field(default_factory=AlgorithmConfig)
trainer: TrainerConfig = field(default_factory=TrainerConfig)
def post_init(self):
self.worker.rollout.prompt_length = self.data.max_prompt_length
self.worker.rollout.response_length = self.data.max_response_length
def deep_post_init(self):
recursive_post_init(self)
def to_dict(self):
return asdict(self)
# Copyright 2024 Bytedance Ltd. and/or its affiliates
# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Core functions to implement PPO algorithms.
The function implemented in this file should be used by trainer with different distributed strategies to
implement PPO
"""
from collections import defaultdict
from typing import TYPE_CHECKING, Tuple
import numpy as np
import torch
import verl.utils.torch_functional as verl_F
if TYPE_CHECKING:
from verl.trainer.config import AlgorithmConfig
class AdaptiveKLController:
"""
Adaptive KL controller described in the paper:
https://arxiv.org/pdf/1909.08593.pdf
"""
def __init__(self, init_kl_coef: float, target_kl: float, horizon: float):
self.value = init_kl_coef
self.target = target_kl
self.horizon = horizon
def update(self, current_kl, n_steps):
target = self.target
proportional_error = np.clip(current_kl / target - 1, -0.2, 0.2)
mult = 1 + proportional_error * n_steps / self.horizon
self.value *= mult
class FixedKLController:
"""Fixed KL controller."""
def __init__(self, kl_coef: float):
self.value = kl_coef
def update(self, current_kl, n_steps):
pass
def get_kl_controller(algorithm_config: "AlgorithmConfig"):
if algorithm_config.kl_type == "fixed":
kl_ctrl = FixedKLController(kl_coef=algorithm_config.kl_coef)
elif algorithm_config.kl_type == "adaptive":
assert algorithm_config.kl_horizon > 0, f"horizon must be larger than 0. Got {algorithm_config.kl_horizon}."
kl_ctrl = AdaptiveKLController(
init_kl_coef=algorithm_config.kl_coef,
target_kl=algorithm_config.kl_target,
horizon=algorithm_config.kl_horizon,
)
else:
raise ValueError("Unknown kl_ctrl type")
return kl_ctrl
def compute_gae_advantage_return(
token_level_rewards: torch.Tensor,
values: torch.Tensor,
eos_mask: torch.Tensor,
gamma: torch.Tensor,
lam: torch.Tensor,
):
"""Adapted from https://github.com/huggingface/trl/blob/main/trl/trainer/ppo_trainer.py
Args:
token_level_rewards: `(torch.Tensor)`
shape: (bs, response_length)
values: `(torch.Tensor)`
shape: (bs, response_length)
eos_mask: `(torch.Tensor)`
shape: (bs, response_length). [EOS] mask. The token after [EOS] have mask zero.
gamma: `(float)`
discounted factor used in RL
lam: `(float)`
lambda value when computing Generalized Advantage Estimation (https://arxiv.org/abs/1506.02438)
Returns:
advantages: `(torch.Tensor)`
shape: (bs, response_length)
Returns: `(torch.Tensor)`
shape: (bs, response_length)
"""
with torch.no_grad():
lastgaelam = 0
advantages_reversed = []
gen_len = token_level_rewards.shape[-1]
for t in reversed(range(gen_len)):
nextvalues = values[:, t + 1] if t < gen_len - 1 else 0.0
delta = token_level_rewards[:, t] + gamma * nextvalues - values[:, t]
lastgaelam = delta + gamma * lam * lastgaelam
advantages_reversed.append(lastgaelam)
advantages = torch.stack(advantages_reversed[::-1], dim=1)
returns = advantages + values
advantages = verl_F.masked_whiten(advantages, eos_mask)
return advantages, returns
# NOTE(sgm): this implementation only consider outcome supervision, where the reward is a scalar.
def compute_grpo_outcome_advantage(
token_level_rewards: torch.Tensor, eos_mask: torch.Tensor, index: torch.Tensor, epsilon: float = 1e-6
):
"""
Compute advantage for GRPO, operating only on Outcome reward
(with only one scalar reward for each response).
Args:
token_level_rewards: `(torch.Tensor)`
shape: (bs, response_length)
eos_mask: `(torch.Tensor)`
shape: (bs, response_length)
Returns:
advantages: `(torch.Tensor)`
shape: (bs, response_length)
Returns: `(torch.Tensor)`
shape: (bs, response_length)
"""
response_length = token_level_rewards.shape[-1]
scores = token_level_rewards.sum(dim=-1)
id2score = defaultdict(list)
id2mean = {}
id2std = {}
with torch.no_grad():
bsz = scores.shape[0]
for i in range(bsz):
id2score[index[i]].append(scores[i])
for idx in id2score:
if len(id2score[idx]) == 1:
id2mean[idx] = torch.tensor(0.0)
id2std[idx] = torch.tensor(1.0)
elif len(id2score[idx]) > 1:
id2mean[idx] = torch.mean(torch.tensor(id2score[idx]))
id2std[idx] = torch.std(torch.tensor([id2score[idx]]))
else:
raise ValueError(f"no score in prompt index: {idx}")
for i in range(bsz):
scores[i] = (scores[i] - id2mean[index[i]]) / (id2std[index[i]] + epsilon)
scores = scores.unsqueeze(-1).tile([1, response_length]) * eos_mask
return scores, scores
def compute_reinforce_plus_plus_outcome_advantage(
token_level_rewards: torch.Tensor, eos_mask: torch.Tensor, gamma: torch.Tensor
):
"""
Compute advantage for REINFORCE++.
This implementation is based on the paper: https://arxiv.org/abs/2501.03262
Args:
token_level_rewards: `(torch.Tensor)`
shape: (bs, response_length)
eos_mask: `(torch.Tensor)`
shape: (bs, response_length)
Returns:
advantages: `(torch.Tensor)`
shape: (bs, response_length)
Returns: `(torch.Tensor)`
shape: (bs, response_length)
"""
with torch.no_grad():
returns = torch.zeros_like(token_level_rewards)
running_return = 0
for t in reversed(range(token_level_rewards.shape[1])):
running_return = token_level_rewards[:, t] + gamma * running_return
returns[:, t] = running_return
# Reset after EOS
running_return = running_return * eos_mask[:, t]
advantages = verl_F.masked_whiten(returns, eos_mask)
advantages = advantages * eos_mask
return advantages, returns
def compute_remax_outcome_advantage(
token_level_rewards: torch.Tensor, reward_baselines: torch.Tensor, eos_mask: torch.Tensor
):
"""
Compute advantage for ReMax, operating only on Outcome reward
This implementation is based on the paper: https://arxiv.org/abs/2310.10505
(with only one scalar reward for each response).
Args:
token_level_rewards: `(torch.Tensor)`
shape: (bs, response_length)
reward_baselines: `(torch.Tensor)`
shape: (bs,)
eos_mask: `(torch.Tensor)`
shape: (bs, response_length)
Returns:
advantages: `(torch.Tensor)`
shape: (bs, response_length)
Returns: `(torch.Tensor)`
shape: (bs, response_length)
"""
response_length = token_level_rewards.shape[-1]
# scores = token_level_rewards.sum(dim=-1)
with torch.no_grad():
returns = (token_level_rewards * eos_mask).flip(dims=[-1]).cumsum(dim=-1).flip(dims=[-1])
advantages = returns - reward_baselines.unsqueeze(-1).tile([1, response_length]) * eos_mask
return advantages, returns
def compute_rewards(token_level_scores, old_log_prob, ref_log_prob, kl_ratio):
kl = old_log_prob - ref_log_prob
return token_level_scores - kl * kl_ratio
def compute_policy_loss(
old_log_prob, log_prob, advantages, eos_mask, cliprange
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
"""Adapted from https://github.com/huggingface/trl/blob/main/trl/trainer/ppo_trainer.py#L1122
Args:
old_log_prob: `(torch.Tensor)`
shape: (bs, response_length)
log_prob: `(torch.Tensor)`
shape: (bs, response_length)
advantages: `(torch.Tensor)`
shape: (bs, response_length)
eos_mask: `(torch.Tensor)`
shape: (bs, response_length)
cliprange: (float)
The clip range used in PPO. See https://arxiv.org/abs/1707.06347
Returns:
pg_loss: `a scalar torch.Tensor`
policy gradient loss computed via PPO
pg_clipfrac: (float)
a float number indicating the fraction of policy gradient loss being clipped
"""
negative_approx_kl = log_prob - old_log_prob
ratio = torch.exp(negative_approx_kl)
ppo_kl = verl_F.masked_mean(-negative_approx_kl, eos_mask)
pg_losses = -advantages * ratio
pg_losses2 = -advantages * torch.clamp(ratio, 1.0 - cliprange, 1.0 + cliprange)
pg_loss = verl_F.masked_mean(torch.max(pg_losses, pg_losses2), eos_mask)
pg_clipfrac = verl_F.masked_mean(torch.gt(pg_losses2, pg_losses).float(), eos_mask)
return pg_loss, pg_clipfrac, ppo_kl
def compute_entropy_loss(logits, eos_mask):
"""Compute Categorical entropy loss
Args:
logits: `(torch.Tensor)`
shape: (bs, response_length, vocab_size)
eos_mask: `(torch.Tensor)`
shape: (bs, response_length)
Returns:
entropy: a scalar torch.Tensor
"""
# compute entropy
entropy = verl_F.entropy_from_logits(logits) # (bs, response_len)
entropy_loss = verl_F.masked_mean(entropy, mask=eos_mask)
return entropy_loss
def compute_value_loss(vpreds, returns, values, eos_mask, cliprange_value):
"""Compute the value loss. Copied from https://github.com/huggingface/trl/blob/main/trl/trainer/ppo_trainer.py#L1151
Args:
vpreds (`torch.FloatTensor`):
Predicted values of the value head, shape (`batch_size`, `response_length`)
values (`torch.FloatTensor`):
Old values of value head, shape (`batch_size`, `response_length`)
returns: (`torch.FloatTensor`):
Ground truth returns, shape (`batch_size`, `response_length`)
Returns:
vf_loss: a scalar (`torch.FloatTensor`):
value function loss
vf_clipfrac: a float
The ratio of vf being clipped
"""
vpredclipped = verl_F.clip_by_value(vpreds, values - cliprange_value, values + cliprange_value)
vf_losses1 = (vpreds - returns) ** 2
vf_losses2 = (vpredclipped - returns) ** 2
vf_loss = 0.5 * verl_F.masked_mean(torch.max(vf_losses1, vf_losses2), eos_mask)
vf_clipfrac = verl_F.masked_mean(torch.gt(vf_losses2, vf_losses1).float(), eos_mask)
return vf_loss, vf_clipfrac
def kl_penalty(logprob: torch.FloatTensor, ref_logprob: torch.FloatTensor, kl_penalty) -> torch.Tensor:
"""Compute KL divergence given logprob and ref_logprob.
Copied from https://github.com/huggingface/trl/blob/main/trl/trainer/ppo_trainer.py#L1104
Args:
logprob:
ref_logprob:
Returns:
"""
if kl_penalty == "kl":
return logprob - ref_logprob
if kl_penalty == "abs":
return (logprob - ref_logprob).abs()
if kl_penalty == "mse":
return 0.5 * (logprob - ref_logprob).square()
# J. Schulman. Approximating kl divergence, 2020.
# # URL http://joschu.net/blog/kl-approx.html.
if kl_penalty == "low_var_kl":
kl = ref_logprob - logprob
ratio = torch.exp(kl)
kld = (ratio - kl - 1).contiguous()
return torch.clamp(kld, min=-10, max=10)
if kl_penalty == "full":
# so, here logprob and ref_logprob should contain the logits for every token in vocabulary
raise NotImplementedError
raise NotImplementedError
# Copyright 2024 Bytedance Ltd. and/or its affiliates
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Note that we don't combine the main with ray_trainer as ray_trainer is used by other main.
"""
import json
import ray
from omegaconf import OmegaConf
from verl.single_controller.ray import RayWorkerGroup
from verl.trainer.config import PPOConfig
from verl.trainer.ray_trainer import RayPPOTrainer, ResourcePoolManager, Role
from verl.utils import get_processor, get_tokenizer
from verl.workers.fsdp_workers import FSDPWorker
from verl.workers.reward import CustomRewardManager
def main():
cli_args = OmegaConf.from_cli()
file_config = OmegaConf.load(cli_args.config)
del cli_args.config
default_config = OmegaConf.structured(PPOConfig())
ppo_config = OmegaConf.merge(default_config, file_config, cli_args)
ppo_config = OmegaConf.to_object(ppo_config)
if not ray.is_initialized():
# this is for local ray cluster
ray.init(runtime_env={"env_vars": {"TOKENIZERS_PARALLELISM": "true", "NCCL_DEBUG": "WARN"}})
ray.get(main_task.remote(ppo_config))
@ray.remote(num_cpus=1) # please make sure main_task is not scheduled on head
def main_task(config: PPOConfig):
config.deep_post_init()
print(json.dumps(config.to_dict(), indent=2))
# instantiate tokenizer
tokenizer = get_tokenizer(config.worker.actor.model.model_path)
processor = get_processor(config.worker.actor.model.model_path, use_fast=True)
# define worker classes
ray_worker_group_cls = RayWorkerGroup
role_worker_mapping = {
Role.ActorRollout: ray.remote(FSDPWorker),
Role.Critic: ray.remote(FSDPWorker),
Role.RefPolicy: ray.remote(FSDPWorker),
}
global_pool_id = "global_pool"
resource_pool_spec = {
global_pool_id: [config.trainer.n_gpus_per_node] * config.trainer.nnodes,
}
mapping = {
Role.ActorRollout: global_pool_id,
Role.Critic: global_pool_id,
Role.RefPolicy: global_pool_id,
}
reward_fn = CustomRewardManager(
tokenizer=tokenizer, num_examine=1, compute_score=config.worker.reward.compute_score
)
val_reward_fn = CustomRewardManager(
tokenizer=tokenizer, num_examine=1, compute_score=config.worker.reward.compute_score
)
resource_pool_manager = ResourcePoolManager(resource_pool_spec=resource_pool_spec, mapping=mapping)
trainer = RayPPOTrainer(
config=config,
tokenizer=tokenizer,
processor=processor,
role_worker_mapping=role_worker_mapping,
resource_pool_manager=resource_pool_manager,
ray_worker_group_cls=ray_worker_group_cls,
reward_fn=reward_fn,
val_reward_fn=val_reward_fn,
)
trainer.init_workers()
trainer.fit()
if __name__ == "__main__":
main()
This diff is collapsed.
# Copyright 2024 Bytedance Ltd. and/or its affiliates
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from .tokenizer import get_processor, get_tokenizer
__all__ = ["get_processor", "get_tokenizer"]
# Copyright 2024 Bytedance Ltd. and/or its affiliates
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment