{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "/home/chiayu/miniconda3/envs/flux/lib/python3.11/site-packages/tqdm/auto.py:21: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n", " from .autonotebook import tqdm as notebook_tqdm\n", "/home/chiayu/miniconda3/envs/flux/lib/python3.11/site-packages/transformers/utils/hub.py:127: FutureWarning: Using `PYTORCH_TRANSFORMERS_CACHE` is deprecated and will be removed in v5 of Transformers. Use `HF_HOME` instead.\n", " warnings.warn(\n", "2024-12-31 11:31:40.419075: E external/local_xla/xla/stream_executor/cuda/cuda_fft.cc:485] Unable to register cuFFT factory: Attempting to register factory for plugin cuFFT when one has already been registered\n", "2024-12-31 11:31:40.430545: E external/local_xla/xla/stream_executor/cuda/cuda_dnn.cc:8454] Unable to register cuDNN factory: Attempting to register factory for plugin cuDNN when one has already been registered\n", "2024-12-31 11:31:40.434019: E external/local_xla/xla/stream_executor/cuda/cuda_blas.cc:1452] Unable to register cuBLAS factory: Attempting to register factory for plugin cuBLAS when one has already been registered\n", "2024-12-31 11:31:40.442720: I tensorflow/core/platform/cpu_feature_guard.cc:210] This TensorFlow binary is optimized to use available CPU instructions in performance-critical operations.\n", "To enable the following instructions: AVX2 FMA, in other operations, rebuild TensorFlow with the appropriate compiler flags.\n", "2024-12-31 11:31:41.173874: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Could not find TensorRT\n", "/home/chiayu/miniconda3/envs/flux/lib/python3.11/site-packages/torch/nn/utils/weight_norm.py:134: FutureWarning: `torch.nn.utils.weight_norm` is deprecated in favor of `torch.nn.utils.parametrizations.weight_norm`.\n", " WeightNorm.apply(module, name, dim)\n", "Fetching 4 files: 25%|██▌ | 1/4 [00:00<00:01, 1.86it/s]" ] } ], "source": [ "import torchaudio\n", "from tangoflux import TangoFluxInference\n", "from IPython.display import Audio\n", "model = TangoFluxInference(name='declare-lab/TangoFlux')\n", "\n", "\n", "audio = model.generate('Hammer slowly hitting the wooden table',steps=50,duration=10)\n", "\n", "Audio(data=audio,rate=44100)" ] }, { "cell_type": "code", "execution_count": 16, "metadata": {}, "outputs": [], "source": [ "torchaudio.save('temp.wav', audio, sample_rate=44100)" ] } ], "metadata": { "kernelspec": { "display_name": "flux", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.11.10" } }, "nbformat": 4, "nbformat_minor": 2 }