import torch from nunchaku.models.transformers.transformer_qwenimage import NunchakuQwenImageTransformer2DModel from nunchaku.pipeline.pipeline_qwenimage import NunchakuQwenImagePipeline from nunchaku.utils import get_precision model_name = "Qwen/Qwen-Image" # Load the model transformer = NunchakuQwenImageTransformer2DModel.from_pretrained( f"nunchaku-tech/nunchaku-qwen-image/svdq-{get_precision()}_r32-qwen-image.safetensors" ) # you can also use r128 model to improve the quality # currently, you need to use this pipeline to offload the model to CPU pipe = NunchakuQwenImagePipeline.from_pretrained("Qwen/Qwen-Image", transformer=transformer, torch_dtype=torch.bfloat16) positive_magic = { "en": "Ultra HD, 4K, cinematic composition.", # for english prompt, "zh": "超清,4K,电影级构图", # for chinese prompt, } # Generate image prompt = """A coffee shop entrance features a chalkboard sign reading "Qwen Coffee 😊 $2 per cup," with a neon light beside it displaying "通义千问". Next to it hangs a poster showing a beautiful Chinese woman, and beneath the poster is written "π≈3.1415926-53589793-23846264-33832795-02384197". Ultra HD, 4K, cinematic composition""" negative_prompt = " " # using an empty string if you do not have specific concept to remove image = pipe( prompt=prompt + positive_magic["en"], negative_prompt=negative_prompt, width=1328, height=1328, num_inference_steps=50, true_cfg_scale=4.0, generator=torch.Generator().manual_seed(2333), ).images[0] image.save("qwen-image.png")