import torch from diffusers import FluxFillPipeline from diffusers.utils import load_image from nunchaku import NunchakuFluxTransformer2dModel from nunchaku.utils import get_precision image = load_image("./removal_image.png") mask = load_image("./removal_mask.png") precision = get_precision() # auto-detect your precision is 'int4' or 'fp4' based on your GPU transformer = NunchakuFluxTransformer2dModel.from_pretrained(f"mit-han-lab/svdq-{precision}-flux.1-fill-dev") ### LoRA Related Code ### transformer.update_lora_params( "loras/removalV2.safetensors" ) # Path to your LoRA safetensors, can also be a remote HuggingFace path transformer.set_lora_strength(1) # Your LoRA strength here ### End of LoRA Related Code ### pipe = FluxFillPipeline.from_pretrained( "black-forest-labs/FLUX.1-Fill-dev", transformer=transformer, torch_dtype=torch.bfloat16 ).to("cuda") image = pipe( prompt="", image=image, mask_image=mask, height=720, width=1280, guidance_scale=30, num_inference_steps=20, max_sequence_length=512, generator=torch.Generator().manual_seed(42), ).images[0] image.save(f"flux.1-fill-dev-{precision}.png")