import torch from diffusers import FluxPipeline from nunchaku.models.transformers.transformer_flux import NunchakuFluxTransformer2dModel if __name__ == "__main__": capability = torch.cuda.get_device_capability(0) sm = f"{capability[0]}{capability[1]}" precision = "fp4" if sm == "120" else "int4" transformer = NunchakuFluxTransformer2dModel.from_pretrained( f"mit-han-lab/svdq-{precision}-flux.1-schnell", precision=precision ) pipeline = FluxPipeline.from_pretrained( "black-forest-labs/FLUX.1-schnell", transformer=transformer, torch_dtype=torch.bfloat16 ).to("cuda") image = pipeline( "A cat holding a sign that says hello world", width=1024, height=1024, num_inference_steps=4, guidance_scale=0 ).images[0]