import os import torch from diffusers import FluxPipeline from nunchaku import NunchakuFluxTransformer2dModel from nunchaku.utils import get_precision from ..utils import compute_lpips def test_lora_reset(): precision = get_precision() # auto-detect your precision is 'int4' or 'fp4' based on your GPU transformer = NunchakuFluxTransformer2dModel.from_pretrained( f"mit-han-lab/nunchaku-flux.1-dev/svdq-{precision}_r32-flux.1-dev.safetensors", offload=True ) pipeline = FluxPipeline.from_pretrained( "black-forest-labs/FLUX.1-dev", transformer=transformer, torch_dtype=torch.bfloat16 ) pipeline.enable_sequential_cpu_offload() save_dir = os.path.join("test_results", "bf16", "flux", "lora_reset") os.makedirs(save_dir, exist_ok=True) image = pipeline( "cozy mountain cabin covered in snow, with smoke curling from the chimney and a warm, inviting light spilling through the windows", # noqa: E501 num_inference_steps=8, guidance_scale=3.5, generator=torch.Generator().manual_seed(23), ).images[0] image.save(os.path.join(save_dir, "before.png")) transformer.update_lora_params("alimama-creative/FLUX.1-Turbo-Alpha/diffusion_pytorch_model.safetensors") transformer.set_lora_strength(50) transformer.reset_lora() image = pipeline( "cozy mountain cabin covered in snow, with smoke curling from the chimney and a warm, inviting light spilling through the windows", # noqa: E501 num_inference_steps=8, guidance_scale=3.5, generator=torch.Generator().manual_seed(23), ).images[0] image.save(os.path.join(save_dir, "after.png")) lpips = compute_lpips(os.path.join(save_dir, "before.png"), os.path.join(save_dir, "after.png")) print(f"LPIPS: {lpips}") assert lpips < 0.232 * 1.1