import torch from diffusers import QwenImagePipeline from nunchaku.models.transformers.transformer_qwenimage import NunchakuQwenImageTransformer2DModel from nunchaku.utils import get_gpu_memory, get_precision model_name = "Qwen/Qwen-Image" rank = 32 # you can also use rank=128 model to improve the quality # Load the model transformer = NunchakuQwenImageTransformer2DModel.from_pretrained( f"nunchaku-tech/nunchaku-qwen-image/svdq-{get_precision()}_r{rank}-qwen-image.safetensors" ) # currently, you need to use this pipeline to offload the model to CPU pipe = QwenImagePipeline.from_pretrained("Qwen/Qwen-Image", transformer=transformer, torch_dtype=torch.bfloat16) if get_gpu_memory() > 18: pipe.enable_model_cpu_offload() else: # use per-layer offloading for low VRAM. This only requires 3-4GB of VRAM. transformer.set_offload( True, use_pin_memory=False, num_blocks_on_gpu=1 ) # increase num_blocks_on_gpu if you have more VRAM pipe._exclude_from_cpu_offload.append("transformer") pipe.enable_sequential_cpu_offload() positive_magic = { "en": "Ultra HD, 4K, cinematic composition.", # for english prompt, "zh": "超清,4K,电影级构图", # for chinese prompt, } # Generate image prompt = """Bookstore window display. A sign displays “New Arrivals This Week”. Below, a shelf tag with the text “Best-Selling Novels Here”. To the side, a colorful poster advertises “Author Meet And Greet on Saturday” with a central portrait of the author. There are four books on the bookshelf, namely “The light between worlds” “When stars are scattered” “The slient patient” “The night circus”""" negative_prompt = " " # using an empty string if you do not have specific concept to remove image = pipe( prompt=prompt + positive_magic["en"], negative_prompt=negative_prompt, width=1664, height=928, num_inference_steps=50, true_cfg_scale=4.0, ).images[0] image.save(f"qwen-image-r{rank}.png")