Quantized Text Encoders ======================= Nunchaku provides a quantized T5 encoder for FLUX.1 to reduce GPU memory usage. .. literalinclude:: ../../../examples/flux.1-dev-qencoder.py :language: python :caption: Running FLUX.1-dev with Quantized T5 (`examples/flux.1-dev-qencoder.py `__) :linenos: :emphasize-lines: 11, 14 The key changes from `Basic Usage <./basic_usage>`_ are: **Loading Quantized T5 Encoder** (line 11): Use :class:`~nunchaku.models.text_encoders.t5_encoder.NunchakuT5EncoderModel` to load the quantized encoder. This reduces GPU memory usage while maintaining quality. Supports local or Hugging Face remote paths. **Pipeline Integration** (line 14): Pass the quantized encoder to the pipeline via the ``text_encoder_2`` parameter, replacing the default T5 encoder. .. note:: The quantized T5 encoder currently only supports CUDA backend. Turing GPUs will be supported later.