import torch from diffusers import FluxPipeline from nunchaku import NunchakuFluxTransformer2dModel from nunchaku.caching.diffusers_adapters import apply_cache_on_pipe from nunchaku.utils import get_precision precision = get_precision() # auto-detect your precision is 'int4' or 'fp4' based on your GPU transformer = NunchakuFluxTransformer2dModel.from_pretrained(f"mit-han-lab/svdq-{precision}-flux.1-dev") pipeline = FluxPipeline.from_pretrained( "black-forest-labs/FLUX.1-dev", transformer=transformer, torch_dtype=torch.bfloat16 ).to("cuda") apply_cache_on_pipe( pipeline, residual_diff_threshold=0.12 ) # Set the first-block cache threshold. Increasing the value enhances speed at the cost of quality. image = pipeline(["A cat holding a sign that says hello world"], num_inference_steps=50).images[0] image.save(f"flux.1-dev-cache-{precision}.png")