import torch from diffusers import FluxKontextPipeline from diffusers.utils import load_image from nunchaku import NunchakuFluxTransformer2dModel from nunchaku.utils import get_precision transformer = NunchakuFluxTransformer2dModel.from_pretrained( f"nunchaku-tech/nunchaku-flux.1-kontext-dev/svdq-{get_precision()}_r32-flux.1-kontext-dev.safetensors" ) pipeline = FluxKontextPipeline.from_pretrained( "black-forest-labs/FLUX.1-Kontext-dev", transformer=transformer, torch_dtype=torch.bfloat16 ).to("cuda") image = load_image( "https://huggingface.co/datasets/nunchaku-tech/test-data/resolve/main/ComfyUI-nunchaku/inputs/monalisa.jpg" ).convert("RGB") ### LoRA Related Code ### transformer.update_lora_params( "nunchaku-tech/nunchaku-test-models/relight-kontext-lora-single-caption_comfy.safetensors" # "linoyts/relight-kontext-lora-single-caption/relight-kontext-lora-single-caption.safetensors" ) # Path to your LoRA safetensors, can also be a remote HuggingFace path transformer.set_lora_strength(1) # Your LoRA strength here ### End of LoRA Related Code ### prompt = "neon light, city" image = pipeline(image=image, prompt=prompt, generator=torch.Generator().manual_seed(23), guidance_scale=2.5).images[0] image.save("flux-kontext-dev.png")