import pytest from nunchaku.utils import get_precision, is_turing from .utils import run_test @pytest.mark.skipif(is_turing(), reason="Skip tests due to using Turing GPUs") @pytest.mark.parametrize( "num_inference_steps,lora_name,lora_strength,cpu_offload,expected_lpips", [ (25, "realism", 0.9, True, 0.136 if get_precision() == "int4" else 0.112), # (25, "ghibsky", 1, False, 0.186), # (28, "anime", 1, False, 0.284), (24, "sketch", 1, True, 0.291 if get_precision() == "int4" else 0.182), # (28, "yarn", 1, False, 0.211), # (25, "haunted_linework", 1, True, 0.317), ], ) def test_flux_dev_loras(num_inference_steps, lora_name, lora_strength, cpu_offload, expected_lpips): run_test( precision=get_precision(), model_name="flux.1-dev", dataset_name=lora_name, height=1024, width=1024, num_inference_steps=num_inference_steps, guidance_scale=3.5, use_qencoder=False, attention_impl="nunchaku-fp16", cpu_offload=cpu_offload, lora_names=lora_name, lora_strengths=lora_strength, cache_threshold=0, expected_lpips=expected_lpips, ) # lora composition & large rank loras @pytest.mark.skipif(is_turing(), reason="Skip tests due to using Turing GPUs") def test_flux_dev_turbo8_ghibsky_1024x1024(): run_test( precision=get_precision(), model_name="flux.1-dev", dataset_name="haunted_linework", height=1024, width=1024, num_inference_steps=8, guidance_scale=3.5, use_qencoder=False, cpu_offload=True, lora_names=["realism", "ghibsky", "anime", "sketch", "yarn", "haunted_linework", "turbo8"], lora_strengths=[0, 1, 0, 0, 0, 0, 1], cache_threshold=0, expected_lpips=0.310 if get_precision() == "int4" else 0.168, )