import torch from diffusers import FluxPipeline from nunchaku.models.transformer_flux import NunchakuFluxTransformer2dModel from nunchaku.caching.diffusers_adapters import apply_cache_on_pipe import time transformer = NunchakuFluxTransformer2dModel.from_pretrained("mit-han-lab/svdq-int4-flux.1-schnell") pipeline = FluxPipeline.from_pretrained( "black-forest-labs/FLUX.1-schnell", transformer=transformer, torch_dtype=torch.bfloat16 ).to("cuda") apply_cache_on_pipe( pipeline, residual_diff_threshold=0.12) image = pipeline( ["A cat holding a sign that says hello world"], width=1024, height=1024, num_inference_steps=32, guidance_scale=0 ).images[0] image.save("flux.1-schnell-int4-0.12.png")