import torch from diffusers import FluxPipeline from nunchaku.models.transformer_flux import NunchakuFluxTransformer2dModel transformer = NunchakuFluxTransformer2dModel.from_pretrained("mit-han-lab/svdq-int4-flux.1-dev") pipeline = FluxPipeline.from_pretrained( "black-forest-labs/FLUX.1-dev", transformer=transformer, torch_dtype=torch.bfloat16 ).to("cuda") ### LoRA Related Code ### transformer.update_lora_params( "mit-han-lab/svdquant-lora-collection/svdq-int4-flux.1-dev-ghibsky.safetensors" ) # Path to your converted LoRA safetensors, can also be a remote HuggingFace path transformer.set_lora_strength(1) # Your LoRA strength here ### End of LoRA Related Code ### image = pipeline( "GHIBSKY style, cozy mountain cabin covered in snow, with smoke curling from the chimney and a warm, inviting light spilling through the windows", num_inference_steps=25, guidance_scale=3.5, ).images[0] image.save("flux.1-dev-ghibsky.png")