import torch from diffusers import FluxPipeline from nunchaku import NunchakuFluxTransformer2dModel from nunchaku.caching.diffusers_adapters import apply_cache_on_pipe from nunchaku.utils import get_precision precision = get_precision() transformer = NunchakuFluxTransformer2dModel.from_pretrained( f"mit-han-lab/nunchaku-flux.1-dev/svdq-{precision}_r32-flux.1-dev.safetensors", offload=True, ) pipeline = FluxPipeline.from_pretrained( "black-forest-labs/FLUX.1-dev", transformer=transformer, torch_dtype=torch.bfloat16 ).to("cuda") apply_cache_on_pipe( pipeline, use_double_fb_cache=True, residual_diff_threshold_multi=0.09, residual_diff_threshold_single=0.12, ) image = pipeline(["A cat holding a sign that says hello world"], num_inference_steps=50).images[0] image.save(f"flux.1-dev-cache-{precision}.png")