# AUTOGENERATED! DO NOT EDIT! File to edit: ../../nbs/models.tsmixerx.ipynb. # %% auto 0 __all__ = ['TSMixerx'] # %% ../../nbs/models.tsmixerx.ipynb 5 import torch import torch.nn as nn import torch.nn.functional as F from ..losses.pytorch import MAE from ..common._base_multivariate import BaseMultivariate # %% ../../nbs/models.tsmixerx.ipynb 8 class TemporalMixing(nn.Module): def __init__(self, num_features, h, dropout): super().__init__() self.temporal_norm = nn.LayerNorm(normalized_shape=(h, num_features)) self.temporal_lin = nn.Linear(h, h) self.temporal_drop = nn.Dropout(dropout) def forward(self, input): x = input.permute(0, 2, 1) # [B, h, C] -> [B, C, h] x = F.relu(self.temporal_lin(x)) # [B, C, h] -> [B, C, h] x = x.permute(0, 2, 1) # [B, C, h] -> [B, h, C] x = self.temporal_drop(x) # [B, h, C] -> [B, h, C] return self.temporal_norm(x + input) class FeatureMixing(nn.Module): def __init__(self, in_features, out_features, h, dropout, ff_dim): super().__init__() self.feature_lin_1 = nn.Linear(in_features=in_features, out_features=ff_dim) self.feature_lin_2 = nn.Linear(in_features=ff_dim, out_features=out_features) self.feature_drop_1 = nn.Dropout(p=dropout) self.feature_drop_2 = nn.Dropout(p=dropout) self.linear_project_residual = False if in_features != out_features: self.project_residual = nn.Linear( in_features=in_features, out_features=out_features ) self.linear_project_residual = True self.feature_norm = nn.LayerNorm(normalized_shape=(h, out_features)) def forward(self, input): x = F.relu(self.feature_lin_1(input)) # [B, h, C_in] -> [B, h, ff_dim] x = self.feature_drop_1(x) # [B, h, ff_dim] -> [B, h, ff_dim] x = self.feature_lin_2(x) # [B, h, ff_dim] -> [B, h, C_out] x = self.feature_drop_2(x) # [B, h, C_out] -> [B, h, C_out] if self.linear_project_residual: input = self.project_residual(input) # [B, h, C_in] -> [B, h, C_out] return self.feature_norm(x + input) class MixingLayer(nn.Module): def __init__(self, in_features, out_features, h, dropout, ff_dim): super().__init__() # Mixing layer consists of a temporal and feature mixer self.temporal_mixer = TemporalMixing( num_features=in_features, h=h, dropout=dropout ) self.feature_mixer = FeatureMixing( in_features=in_features, out_features=out_features, h=h, dropout=dropout, ff_dim=ff_dim, ) def forward(self, input): x = self.temporal_mixer(input) # [B, h, C_in] -> [B, h, C_in] x = self.feature_mixer(x) # [B, h, C_in] -> [B, h, C_out] return x class MixingLayerWithStaticExogenous(nn.Module): def __init__(self, h, dropout, ff_dim, stat_input_size): super().__init__() # Feature mixer for the static exogenous variables self.feature_mixer_stat = FeatureMixing( in_features=stat_input_size, out_features=ff_dim, h=h, dropout=dropout, ff_dim=ff_dim, ) # Mixing layer consists of a temporal and feature mixer self.temporal_mixer = TemporalMixing( num_features=2 * ff_dim, h=h, dropout=dropout ) self.feature_mixer = FeatureMixing( in_features=2 * ff_dim, out_features=ff_dim, h=h, dropout=dropout, ff_dim=ff_dim, ) def forward(self, inputs): input, stat_exog = inputs x_stat = self.feature_mixer_stat(stat_exog) # [B, h, S] -> [B, h, ff_dim] x = torch.cat( (input, x_stat), dim=2 ) # [B, h, ff_dim] + [B, h, ff_dim] -> [B, h, 2 * ff_dim] x = self.temporal_mixer(x) # [B, h, 2 * ff_dim] -> [B, h, 2 * ff_dim] x = self.feature_mixer(x) # [B, h, 2 * ff_dim] -> [B, h, ff_dim] return (x, stat_exog) # %% ../../nbs/models.tsmixerx.ipynb 10 class ReversibleInstanceNorm1d(nn.Module): def __init__(self, n_series, eps=1e-5): super().__init__() self.weight = nn.Parameter(torch.ones((1, 1, 1, n_series))) self.bias = nn.Parameter(torch.zeros((1, 1, 1, n_series))) self.eps = eps def forward(self, x): # Batch statistics self.batch_mean = torch.mean(x, axis=2, keepdim=True).detach() self.batch_std = torch.sqrt( torch.var(x, axis=2, keepdim=True, unbiased=False) + self.eps ).detach() # Instance normalization x = x - self.batch_mean x = x / self.batch_std x = x * self.weight x = x + self.bias return x def reverse(self, x): # Reverse the normalization x = x - self.bias x = x / self.weight x = x * self.batch_std x = x + self.batch_mean return x # %% ../../nbs/models.tsmixerx.ipynb 12 class TSMixerx(BaseMultivariate): """TSMixerx Time-Series Mixer exogenous (`TSMixerx`) is a MLP-based multivariate time-series forecasting model, with capability for additional exogenous inputs. `TSMixerx` jointly learns temporal and cross-sectional representations of the time-series by repeatedly combining time- and feature information using stacked mixing layers. A mixing layer consists of a sequential time- and feature Multi Layer Perceptron (`MLP`). **Parameters:**
`h`: int, forecast horizon.
`input_size`: int, considered autorregresive inputs (lags), y=[1,2,3,4] input_size=2 -> lags=[1,2].
`n_series`: int, number of time-series.
`futr_exog_list`: str list, future exogenous columns.
`hist_exog_list`: str list, historic exogenous columns.
`stat_exog_list`: str list, static exogenous columns.
`n_block`: int=2, number of mixing layers in the model.
`ff_dim`: int=64, number of units for the second feed-forward layer in the feature MLP.
`dropout`: float=0.0, dropout rate between (0, 1) .
`revin`: bool=True, if True uses Reverse Instance Normalization on `insample_y` and applies it to the outputs.
`loss`: PyTorch module, instantiated train loss class from [losses collection](https://nixtla.github.io/neuralforecast/losses.pytorch.html).
`valid_loss`: PyTorch module=`loss`, instantiated valid loss class from [losses collection](https://nixtla.github.io/neuralforecast/losses.pytorch.html).
`max_steps`: int=1000, maximum number of training steps.
`learning_rate`: float=1e-3, Learning rate between (0, 1).
`num_lr_decays`: int=-1, Number of learning rate decays, evenly distributed across max_steps.
`early_stop_patience_steps`: int=-1, Number of validation iterations before early stopping.
`val_check_steps`: int=100, Number of training steps between every validation loss check.
`batch_size`: int=32, number of different series in each batch.
`step_size`: int=1, step size between each window of temporal data.
`scaler_type`: str='identity', type of scaler for temporal inputs normalization see [temporal scalers](https://nixtla.github.io/neuralforecast/common.scalers.html).
`random_seed`: int=1, random_seed for pytorch initializer and numpy generators.
`num_workers_loader`: int=os.cpu_count(), workers to be used by `TimeSeriesDataLoader`.
`drop_last_loader`: bool=False, if True `TimeSeriesDataLoader` drops last non-full batch.
`alias`: str, optional, Custom name of the model.
`optimizer`: Subclass of 'torch.optim.Optimizer', optional, user specified optimizer instead of the default choice (Adam).
`optimizer_kwargs`: dict, optional, list of parameters used by the user specified `optimizer`.
`**trainer_kwargs`: int, keyword trainer arguments inherited from [PyTorch Lighning's trainer](https://pytorch-lightning.readthedocs.io/en/stable/api/pytorch_lightning.trainer.trainer.Trainer.html?highlight=trainer).
**References:**
- [Chen, Si-An, Chun-Liang Li, Nate Yoder, Sercan O. Arik, and Tomas Pfister (2023). "TSMixer: An All-MLP Architecture for Time Series Forecasting."](http://arxiv.org/abs/2303.06053) """ # Class attributes SAMPLING_TYPE = "multivariate" def __init__( self, h, input_size, n_series, futr_exog_list=None, hist_exog_list=None, stat_exog_list=None, n_block=2, ff_dim=64, dropout=0.0, revin=True, loss=MAE(), valid_loss=None, max_steps: int = 1000, learning_rate: float = 1e-3, num_lr_decays: int = -1, early_stop_patience_steps: int = -1, val_check_steps: int = 100, batch_size: int = 32, step_size: int = 1, scaler_type: str = "identity", random_seed: int = 1, num_workers_loader: int = 0, drop_last_loader: bool = False, optimizer=None, optimizer_kwargs=None, **trainer_kwargs ): # Inherit BaseMultvariate class super(TSMixerx, self).__init__( h=h, input_size=input_size, n_series=n_series, futr_exog_list=futr_exog_list, hist_exog_list=hist_exog_list, stat_exog_list=stat_exog_list, loss=loss, valid_loss=valid_loss, max_steps=max_steps, learning_rate=learning_rate, num_lr_decays=num_lr_decays, early_stop_patience_steps=early_stop_patience_steps, val_check_steps=val_check_steps, batch_size=batch_size, step_size=step_size, scaler_type=scaler_type, random_seed=random_seed, num_workers_loader=num_workers_loader, drop_last_loader=drop_last_loader, optimizer=optimizer, optimizer_kwargs=optimizer_kwargs, **trainer_kwargs ) # Reversible InstanceNormalization layer self.revin = revin if self.revin: self.norm = ReversibleInstanceNorm1d(n_series=n_series) # Forecast horizon self.h = h # Exogenous variables self.futr_exog_size = len(self.futr_exog_list) self.hist_exog_size = len(self.hist_exog_list) self.stat_exog_size = len(self.stat_exog_list) # Temporal projection and feature mixing of historical variables self.temporal_projection = nn.Linear(in_features=input_size, out_features=h) self.feature_mixer_hist = FeatureMixing( in_features=n_series * (1 + self.hist_exog_size + self.futr_exog_size), out_features=ff_dim, h=h, dropout=dropout, ff_dim=ff_dim, ) first_mixing_ff_dim_multiplier = 1 # Feature mixing of future variables if self.futr_exog_size > 0: self.feature_mixer_futr = FeatureMixing( in_features=n_series * self.futr_exog_size, out_features=ff_dim, h=h, dropout=dropout, ff_dim=ff_dim, ) first_mixing_ff_dim_multiplier += 1 # Feature mixing of static variables if self.stat_exog_size > 0: self.feature_mixer_stat = FeatureMixing( in_features=self.stat_exog_size * n_series, out_features=ff_dim, h=h, dropout=dropout, ff_dim=ff_dim, ) first_mixing_ff_dim_multiplier += 1 # First mixing layer self.first_mixing = MixingLayer( in_features=first_mixing_ff_dim_multiplier * ff_dim, out_features=ff_dim, h=h, dropout=dropout, ff_dim=ff_dim, ) # Mixing layer block if self.stat_exog_size > 0: mixing_layers = [ MixingLayerWithStaticExogenous( h=h, dropout=dropout, ff_dim=ff_dim, stat_input_size=self.stat_exog_size * n_series, ) for _ in range(n_block) ] else: mixing_layers = [ MixingLayer( in_features=ff_dim, out_features=ff_dim, h=h, dropout=dropout, ff_dim=ff_dim, ) for _ in range(n_block) ] self.mixing_block = nn.Sequential(*mixing_layers) # Linear output with Loss dependent dimensions self.out = nn.Linear( in_features=ff_dim, out_features=self.loss.outputsize_multiplier * n_series ) def forward(self, windows_batch): # Parse batch x = windows_batch[ "insample_y" ] # [batch_size (B), input_size (L), n_series (N)] hist_exog = windows_batch["hist_exog"] # [B, hist_exog_size (X), L, N] futr_exog = windows_batch["futr_exog"] # [B, futr_exog_size (F), L + h, N] stat_exog = windows_batch["stat_exog"] # [N, stat_exog_size (S)] batch_size, input_size = x.shape[:2] # Add channel dimension to x x = x.unsqueeze(1) # [B, L, N] -> [B, 1, L, N] # Apply revin to x if self.revin: x = self.norm(x) # [B, 1, L, N] -> [B, 1, L, N] # Concatenate x with historical exogenous if self.hist_exog_size > 0: x = torch.cat( (x, hist_exog), dim=1 ) # [B, 1, L, N] + [B, X, L, N] -> [B, 1 + X, L, N] # Concatenate x with future exogenous of input sequence if self.futr_exog_size > 0: futr_exog_hist = futr_exog[ :, :, :input_size ] # [B, F, L + h, N] -> [B, F, L, N] x = torch.cat( (x, futr_exog_hist), dim=1 ) # [B, 1 + X, L, N] + [B, F, L, N] -> [B, 1 + X + F, L, N] # Temporal projection & feature mixing of x x = x.permute(0, 1, 3, 2) # [B, 1 + X + F, L, N] -> [B, 1 + X + F, N, L] x = self.temporal_projection( x ) # [B, 1 + X + F, N, L] -> [B, 1 + X + F, N, h] x = x.permute(0, 3, 1, 2) # [B, 1 + X + F, N, h] -> [B, h, 1 + X + F, N] x = x.reshape( batch_size, self.h, -1 ) # [B, h, 1 + X + F, N] -> [B, h, (1 + X + F) * N] x = self.feature_mixer_hist(x) # [B, h, (1 + X + F) * N] -> [B, h, ff_dim] # Concatenate x with future exogenous of output horizon if self.futr_exog_size > 0: x_futr = futr_exog[:, :, input_size:] # [B, F, L + h, N] -> [B, F, h, N] x_futr = x_futr.permute(0, 2, 1, 3) # [B, F, h, N] -> [B, h, F, N] x_futr = x_futr.reshape( batch_size, self.h, -1 ) # [B, h, N, F] -> [B, h, N * F] x_futr = self.feature_mixer_futr( x_futr ) # [B, h, N * F] -> [B, h, ff_dim] x = torch.cat( (x, x_futr), dim=2 ) # [B, h, ff_dim] + [B, h, ff_dim] -> [B, h, 2 * ff_dim] # Concatenate x with static exogenous if self.stat_exog_size > 0: stat_exog = stat_exog.reshape(-1) # [N, S] -> [N * S] stat_exog = ( stat_exog.unsqueeze(0).unsqueeze(1).repeat(batch_size, self.h, 1) ) # [N * S] -> [B, h, N * S] x_stat = self.feature_mixer_stat( stat_exog ) # [B, h, N * S] -> [B, h, ff_dim] x = torch.cat( (x, x_stat), dim=2 ) # [B, h, 2 * ff_dim] + [B, h, ff_dim] -> [B, h, 3 * ff_dim] # First mixing layer x = self.first_mixing(x) # [B, h, 3 * ff_dim] -> [B, h, ff_dim] # N blocks of mixing layers if self.stat_exog_size > 0: x, _ = self.mixing_block( (x, stat_exog) ) # [B, h, ff_dim], [B, h, N * S] -> [B, h, ff_dim] else: x = self.mixing_block(x) # [B, h, ff_dim] -> [B, h, ff_dim] # Fully connected output layer x = self.out(x) # [B, h, ff_dim] -> [B, h, N * n_outputs] # Reverse Instance Normalization on output if self.revin: x = x.reshape( batch_size, self.h, self.loss.outputsize_multiplier, -1 ) # [B, h, N * n_outputs] -> [B, h, n_outputs, N] x = self.norm.reverse(x) x = x.reshape( batch_size, self.h, -1 ) # [B, h, n_outputs, N] -> [B, h, n_outputs * N] # Map to loss domain forecast = self.loss.domain_map(x) # domain_map might have squeezed the last dimension in case n_series == 1 # Note that this fails in case of a tuple loss, but Multivariate does not support tuple losses yet. if forecast.ndim == 2: return forecast.unsqueeze(-1) else: return forecast