# AUTOGENERATED! DO NOT EDIT! File to edit: ../../nbs/models.tsmixer.ipynb. # %% auto 0 __all__ = ['TSMixer'] # %% ../../nbs/models.tsmixer.ipynb 5 import torch import torch.nn as nn import torch.nn.functional as F from ..losses.pytorch import MAE from ..common._base_multivariate import BaseMultivariate # %% ../../nbs/models.tsmixer.ipynb 8 class TemporalMixing(nn.Module): def __init__(self, n_series, input_size, dropout): super().__init__() self.temporal_norm = nn.BatchNorm1d( num_features=n_series * input_size, eps=0.001, momentum=0.01 ) self.temporal_lin = nn.Linear(input_size, input_size) self.temporal_drop = nn.Dropout(dropout) def forward(self, input): # Get shapes batch_size = input.shape[0] input_size = input.shape[1] n_series = input.shape[2] # Temporal MLP x = input.permute(0, 2, 1) # [B, L, N] -> [B, N, L] x = x.reshape(batch_size, -1) # [B, N, L] -> [B, N * L] x = self.temporal_norm(x) # [B, N * L] -> [B, N * L] x = x.reshape(batch_size, n_series, input_size) # [B, N * L] -> [B, N, L] x = F.relu(self.temporal_lin(x)) # [B, N, L] -> [B, N, L] x = x.permute(0, 2, 1) # [B, N, L] -> [B, L, N] x = self.temporal_drop(x) # [B, L, N] -> [B, L, N] return x + input class FeatureMixing(nn.Module): def __init__(self, n_series, input_size, dropout, ff_dim): super().__init__() self.feature_norm = nn.BatchNorm1d( num_features=n_series * input_size, eps=0.001, momentum=0.01 ) self.feature_lin_1 = nn.Linear(n_series, ff_dim) self.feature_lin_2 = nn.Linear(ff_dim, n_series) self.feature_drop_1 = nn.Dropout(dropout) self.feature_drop_2 = nn.Dropout(dropout) def forward(self, input): # Get shapes batch_size = input.shape[0] input_size = input.shape[1] n_series = input.shape[2] # Feature MLP x = input.reshape(batch_size, -1) # [B, L, N] -> [B, L * N] x = self.feature_norm(x) # [B, L * N] -> [B, L * N] x = x.reshape(batch_size, input_size, n_series) # [B, L * N] -> [B, L, N] x = F.relu(self.feature_lin_1(x)) # [B, L, N] -> [B, L, ff_dim] x = self.feature_drop_1(x) # [B, L, ff_dim] -> [B, L, ff_dim] x = self.feature_lin_2(x) # [B, L, ff_dim] -> [B, L, N] x = self.feature_drop_2(x) # [B, L, N] -> [B, L, N] return x + input class MixingLayer(nn.Module): def __init__(self, n_series, input_size, dropout, ff_dim): super().__init__() # Mixing layer consists of a temporal and feature mixer self.temporal_mixer = TemporalMixing(n_series, input_size, dropout) self.feature_mixer = FeatureMixing(n_series, input_size, dropout, ff_dim) def forward(self, input): x = self.temporal_mixer(input) x = self.feature_mixer(x) return x # %% ../../nbs/models.tsmixer.ipynb 10 class ReversibleInstanceNorm1d(nn.Module): def __init__(self, n_series, eps=1e-5): super().__init__() self.weight = nn.Parameter(torch.ones((1, 1, n_series))) self.bias = nn.Parameter(torch.zeros((1, 1, n_series))) self.eps = eps def forward(self, x): # Batch statistics self.batch_mean = torch.mean(x, axis=1, keepdim=True).detach() self.batch_std = torch.sqrt( torch.var(x, axis=1, keepdim=True, unbiased=False) + self.eps ).detach() # Instance normalization x = x - self.batch_mean x = x / self.batch_std x = x * self.weight x = x + self.bias return x def reverse(self, x): # Reverse the normalization x = x - self.bias x = x / self.weight x = x * self.batch_std x = x + self.batch_mean return x # %% ../../nbs/models.tsmixer.ipynb 12 class TSMixer(BaseMultivariate): """TSMixer Time-Series Mixer (`TSMixer`) is a MLP-based multivariate time-series forecasting model. `TSMixer` jointly learns temporal and cross-sectional representations of the time-series by repeatedly combining time- and feature information using stacked mixing layers. A mixing layer consists of a sequential time- and feature Multi Layer Perceptron (`MLP`). **Parameters:**
`h`: int, forecast horizon.
`input_size`: int, considered autorregresive inputs (lags), y=[1,2,3,4] input_size=2 -> lags=[1,2].
`n_series`: int, number of time-series.
`futr_exog_list`: str list, future exogenous columns.
`hist_exog_list`: str list, historic exogenous columns.
`stat_exog_list`: str list, static exogenous columns.
`n_block`: int=2, number of mixing layers in the model.
`ff_dim`: int=64, number of units for the second feed-forward layer in the feature MLP.
`dropout`: float=0.9, dropout rate between (0, 1) .
`revin`: bool=True, if True uses Reverse Instance Normalization to process inputs and outputs.
`loss`: PyTorch module, instantiated train loss class from [losses collection](https://nixtla.github.io/neuralforecast/losses.pytorch.html).
`valid_loss`: PyTorch module=`loss`, instantiated valid loss class from [losses collection](https://nixtla.github.io/neuralforecast/losses.pytorch.html).
`max_steps`: int=1000, maximum number of training steps.
`learning_rate`: float=1e-3, Learning rate between (0, 1).
`num_lr_decays`: int=-1, Number of learning rate decays, evenly distributed across max_steps.
`early_stop_patience_steps`: int=-1, Number of validation iterations before early stopping.
`val_check_steps`: int=100, Number of training steps between every validation loss check.
`batch_size`: int=32, number of different series in each batch.
`step_size`: int=1, step size between each window of temporal data.
`scaler_type`: str='identity', type of scaler for temporal inputs normalization see [temporal scalers](https://nixtla.github.io/neuralforecast/common.scalers.html).
`random_seed`: int=1, random_seed for pytorch initializer and numpy generators.
`num_workers_loader`: int=os.cpu_count(), workers to be used by `TimeSeriesDataLoader`.
`drop_last_loader`: bool=False, if True `TimeSeriesDataLoader` drops last non-full batch.
`alias`: str, optional, Custom name of the model.
`optimizer`: Subclass of 'torch.optim.Optimizer', optional, user specified optimizer instead of the default choice (Adam).
`optimizer_kwargs`: dict, optional, list of parameters used by the user specified `optimizer`.
`**trainer_kwargs`: int, keyword trainer arguments inherited from [PyTorch Lighning's trainer](https://pytorch-lightning.readthedocs.io/en/stable/api/pytorch_lightning.trainer.trainer.Trainer.html?highlight=trainer).
**References:**
- [Chen, Si-An, Chun-Liang Li, Nate Yoder, Sercan O. Arik, and Tomas Pfister (2023). "TSMixer: An All-MLP Architecture for Time Series Forecasting."](http://arxiv.org/abs/2303.06053) """ # Class attributes SAMPLING_TYPE = "multivariate" def __init__( self, h, input_size, n_series, futr_exog_list=None, hist_exog_list=None, stat_exog_list=None, n_block=2, ff_dim=64, dropout=0.9, revin=True, loss=MAE(), valid_loss=None, max_steps: int = 1000, learning_rate: float = 1e-3, num_lr_decays: int = -1, early_stop_patience_steps: int = -1, val_check_steps: int = 100, batch_size: int = 32, step_size: int = 1, scaler_type: str = "identity", random_seed: int = 1, num_workers_loader: int = 0, drop_last_loader: bool = False, optimizer=None, optimizer_kwargs=None, **trainer_kwargs ): # Inherit BaseMultivariate class super(TSMixer, self).__init__( h=h, input_size=input_size, n_series=n_series, futr_exog_list=futr_exog_list, hist_exog_list=hist_exog_list, stat_exog_list=stat_exog_list, loss=loss, valid_loss=valid_loss, max_steps=max_steps, learning_rate=learning_rate, num_lr_decays=num_lr_decays, early_stop_patience_steps=early_stop_patience_steps, val_check_steps=val_check_steps, batch_size=batch_size, step_size=step_size, scaler_type=scaler_type, random_seed=random_seed, num_workers_loader=num_workers_loader, drop_last_loader=drop_last_loader, optimizer=optimizer, optimizer_kwargs=optimizer_kwargs, **trainer_kwargs ) # Asserts if stat_exog_list is not None: raise Exception( "TSMixer does not support static exogenous variables. Use TSMixerx if you want to use static exogenous variables." ) if futr_exog_list is not None: raise Exception( "TSMixer does not support future exogenous variables. Use TSMixerx if you want to use future exogenous variables." ) if hist_exog_list is not None: raise Exception( "TSMixer does not support historical exogenous variables. Use TSMixerx if you want to use historical exogenous variables." ) # Reversible InstanceNormalization layer self.revin = revin if self.revin: self.norm = ReversibleInstanceNorm1d(n_series=n_series) # Mixing layers mixing_layers = [ MixingLayer( n_series=n_series, input_size=input_size, dropout=dropout, ff_dim=ff_dim ) for _ in range(n_block) ] self.mixing_layers = nn.Sequential(*mixing_layers) # Linear output with Loss dependent dimensions self.out = nn.Linear( in_features=input_size, out_features=h * self.loss.outputsize_multiplier ) def forward(self, windows_batch): # Parse batch x = windows_batch["insample_y"] # x: [batch_size, input_size, n_series] batch_size = x.shape[0] # TSMixer: InstanceNorm + Mixing layers + Dense output layer + ReverseInstanceNorm if self.revin: x = self.norm(x) x = self.mixing_layers(x) x = x.permute(0, 2, 1) x = self.out(x) x = x.permute(0, 2, 1) if self.revin: x = self.norm.reverse(x) x = x.reshape( batch_size, self.h, self.loss.outputsize_multiplier * self.n_series ) forecast = self.loss.domain_map(x) # domain_map might have squeezed the last dimension in case n_series == 1 # Note that this fails in case of a tuple loss, but Multivariate does not support tuple losses yet. if forecast.ndim == 2: return forecast.unsqueeze(-1) else: return forecast