# AUTOGENERATED! DO NOT EDIT! File to edit: ../../nbs/models.stemgnn.ipynb. # %% auto 0 __all__ = ['GLU', 'StockBlockLayer', 'StemGNN'] # %% ../../nbs/models.stemgnn.ipynb 6 import torch import torch.nn as nn import torch.nn.functional as F from ..losses.pytorch import MAE from ..common._base_multivariate import BaseMultivariate # %% ../../nbs/models.stemgnn.ipynb 7 class GLU(nn.Module): def __init__(self, input_channel, output_channel): super(GLU, self).__init__() self.linear_left = nn.Linear(input_channel, output_channel) self.linear_right = nn.Linear(input_channel, output_channel) def forward(self, x): return torch.mul(self.linear_left(x), torch.sigmoid(self.linear_right(x))) # %% ../../nbs/models.stemgnn.ipynb 8 class StockBlockLayer(nn.Module): def __init__(self, time_step, unit, multi_layer, stack_cnt=0): super(StockBlockLayer, self).__init__() self.time_step = time_step self.unit = unit self.stack_cnt = stack_cnt self.multi = multi_layer self.weight = nn.Parameter( torch.Tensor( 1, 3 + 1, 1, self.time_step * self.multi, self.multi * self.time_step ) ) # [K+1, 1, in_c, out_c] nn.init.xavier_normal_(self.weight) self.forecast = nn.Linear( self.time_step * self.multi, self.time_step * self.multi ) self.forecast_result = nn.Linear(self.time_step * self.multi, self.time_step) if self.stack_cnt == 0: self.backcast = nn.Linear(self.time_step * self.multi, self.time_step) self.backcast_short_cut = nn.Linear(self.time_step, self.time_step) self.relu = nn.ReLU() self.GLUs = nn.ModuleList() self.output_channel = 4 * self.multi for i in range(3): if i == 0: self.GLUs.append( GLU(self.time_step * 4, self.time_step * self.output_channel) ) self.GLUs.append( GLU(self.time_step * 4, self.time_step * self.output_channel) ) elif i == 1: self.GLUs.append( GLU( self.time_step * self.output_channel, self.time_step * self.output_channel, ) ) self.GLUs.append( GLU( self.time_step * self.output_channel, self.time_step * self.output_channel, ) ) else: self.GLUs.append( GLU( self.time_step * self.output_channel, self.time_step * self.output_channel, ) ) self.GLUs.append( GLU( self.time_step * self.output_channel, self.time_step * self.output_channel, ) ) def spe_seq_cell(self, input): batch_size, k, input_channel, node_cnt, time_step = input.size() input = input.view(batch_size, -1, node_cnt, time_step) ffted = torch.view_as_real(torch.fft.fft(input, dim=1)) real = ( ffted[..., 0] .permute(0, 2, 1, 3) .contiguous() .reshape(batch_size, node_cnt, -1) ) img = ( ffted[..., 1] .permute(0, 2, 1, 3) .contiguous() .reshape(batch_size, node_cnt, -1) ) for i in range(3): real = self.GLUs[i * 2](real) img = self.GLUs[2 * i + 1](img) real = ( real.reshape(batch_size, node_cnt, 4, -1).permute(0, 2, 1, 3).contiguous() ) img = img.reshape(batch_size, node_cnt, 4, -1).permute(0, 2, 1, 3).contiguous() time_step_as_inner = torch.cat([real.unsqueeze(-1), img.unsqueeze(-1)], dim=-1) iffted = torch.fft.irfft( torch.view_as_complex(time_step_as_inner), n=time_step_as_inner.shape[1], dim=1, ) return iffted def forward(self, x, mul_L): mul_L = mul_L.unsqueeze(1) x = x.unsqueeze(1) gfted = torch.matmul(mul_L, x) gconv_input = self.spe_seq_cell(gfted).unsqueeze(2) igfted = torch.matmul(gconv_input, self.weight) igfted = torch.sum(igfted, dim=1) forecast_source = torch.sigmoid(self.forecast(igfted).squeeze(1)) forecast = self.forecast_result(forecast_source) if self.stack_cnt == 0: backcast_short = self.backcast_short_cut(x).squeeze(1) backcast_source = torch.sigmoid(self.backcast(igfted) - backcast_short) else: backcast_source = None return forecast, backcast_source # %% ../../nbs/models.stemgnn.ipynb 9 class StemGNN(BaseMultivariate): """StemGNN The Spectral Temporal Graph Neural Network (`StemGNN`) is a Graph-based multivariate time-series forecasting model. `StemGNN` jointly learns temporal dependencies and inter-series correlations in the spectral domain, by combining Graph Fourier Transform (GFT) and Discrete Fourier Transform (DFT). **Parameters:**
`h`: int, Forecast horizon.
`input_size`: int, autorregresive inputs size, y=[1,2,3,4] input_size=2 -> y_[t-2:t]=[1,2].
`n_series`: int, number of time-series.
`stat_exog_list`: str list, static exogenous columns.
`hist_exog_list`: str list, historic exogenous columns.
`futr_exog_list`: str list, future exogenous columns.
`n_stacks`: int=2, number of stacks in the model.
`multi_layer`: int=5, multiplier for FC hidden size on StemGNN blocks.
`dropout_rate`: float=0.5, dropout rate.
`leaky_rate`: float=0.2, alpha for LeakyReLU layer on Latent Correlation layer.
`loss`: PyTorch module, instantiated train loss class from [losses collection](https://nixtla.github.io/neuralforecast/losses.pytorch.html).
`valid_loss`: PyTorch module=`loss`, instantiated valid loss class from [losses collection](https://nixtla.github.io/neuralforecast/losses.pytorch.html).
`max_steps`: int=1000, maximum number of training steps.
`learning_rate`: float=1e-3, Learning rate between (0, 1).
`num_lr_decays`: int=-1, Number of learning rate decays, evenly distributed across max_steps.
`early_stop_patience_steps`: int=-1, Number of validation iterations before early stopping.
`val_check_steps`: int=100, Number of training steps between every validation loss check.
`batch_size`: int, number of windows in each batch.
`step_size`: int=1, step size between each window of temporal data.
`scaler_type`: str='robust', type of scaler for temporal inputs normalization see [temporal scalers](https://nixtla.github.io/neuralforecast/common.scalers.html).
`random_seed`: int, random_seed for pytorch initializer and numpy generators.
`num_workers_loader`: int=os.cpu_count(), workers to be used by `TimeSeriesDataLoader`.
`drop_last_loader`: bool=False, if True `TimeSeriesDataLoader` drops last non-full batch.
`alias`: str, optional, Custom name of the model.
`optimizer`: Subclass of 'torch.optim.Optimizer', optional, user specified optimizer instead of the default choice (Adam).
`optimizer_kwargs`: dict, optional, list of parameters used by the user specified `optimizer`.
`**trainer_kwargs`: int, keyword trainer arguments inherited from [PyTorch Lighning's trainer](https://pytorch-lightning.readthedocs.io/en/stable/api/pytorch_lightning.trainer.trainer.Trainer.html?highlight=trainer).
""" # Class attributes SAMPLING_TYPE = "multivariate" def __init__( self, h, input_size, n_series, futr_exog_list=None, hist_exog_list=None, stat_exog_list=None, n_stacks=2, multi_layer: int = 5, dropout_rate: float = 0.5, leaky_rate: float = 0.2, loss=MAE(), valid_loss=None, max_steps: int = 1000, learning_rate: float = 1e-3, num_lr_decays: int = 3, early_stop_patience_steps: int = -1, val_check_steps: int = 100, batch_size: int = 32, step_size: int = 1, scaler_type: str = "robust", random_seed: int = 1, num_workers_loader=0, drop_last_loader=False, optimizer=None, optimizer_kwargs=None, **trainer_kwargs ): # Inherit BaseMultivariate class super(StemGNN, self).__init__( h=h, input_size=input_size, n_series=n_series, futr_exog_list=futr_exog_list, hist_exog_list=hist_exog_list, stat_exog_list=stat_exog_list, loss=loss, valid_loss=valid_loss, max_steps=max_steps, learning_rate=learning_rate, num_lr_decays=num_lr_decays, early_stop_patience_steps=early_stop_patience_steps, val_check_steps=val_check_steps, batch_size=batch_size, step_size=step_size, scaler_type=scaler_type, num_workers_loader=num_workers_loader, drop_last_loader=drop_last_loader, random_seed=random_seed, optimizer=optimizer, optimizer_kwargs=optimizer_kwargs, **trainer_kwargs ) # Quick fix for now, fix the model later. if n_stacks != 2: raise Exception("StemGNN currently only supports n_stacks=2.") # Exogenous variables self.futr_input_size = len(self.futr_exog_list) self.hist_input_size = len(self.hist_exog_list) self.stat_input_size = len(self.stat_exog_list) self.unit = n_series self.stack_cnt = n_stacks self.alpha = leaky_rate self.time_step = input_size self.horizon = h self.h = h self.weight_key = nn.Parameter(torch.zeros(size=(self.unit, 1))) nn.init.xavier_uniform_(self.weight_key.data, gain=1.414) self.weight_query = nn.Parameter(torch.zeros(size=(self.unit, 1))) nn.init.xavier_uniform_(self.weight_query.data, gain=1.414) self.GRU = nn.GRU(self.time_step, self.unit) self.multi_layer = multi_layer self.stock_block = nn.ModuleList() self.stock_block.extend( [ StockBlockLayer( self.time_step, self.unit, self.multi_layer, stack_cnt=i ) for i in range(self.stack_cnt) ] ) self.fc = nn.Sequential( nn.Linear(int(self.time_step), int(self.time_step)), nn.LeakyReLU(), nn.Linear( int(self.time_step), self.horizon * self.loss.outputsize_multiplier ), ) self.leakyrelu = nn.LeakyReLU(self.alpha) self.dropout = nn.Dropout(p=dropout_rate) def get_laplacian(self, graph, normalize): """ return the laplacian of the graph. :param graph: the graph structure without self loop, [N, N]. :param normalize: whether to used the normalized laplacian. :return: graph laplacian. """ if normalize: D = torch.diag(torch.sum(graph, dim=-1) ** (-1 / 2)) L = torch.eye( graph.size(0), device=graph.device, dtype=graph.dtype ) - torch.mm(torch.mm(D, graph), D) else: D = torch.diag(torch.sum(graph, dim=-1)) L = D - graph return L def cheb_polynomial(self, laplacian): """ Compute the Chebyshev Polynomial, according to the graph laplacian. :param laplacian: the graph laplacian, [N, N]. :return: the multi order Chebyshev laplacian, [K, N, N]. """ N = laplacian.size(0) # [N, N] laplacian = laplacian.unsqueeze(0) first_laplacian = torch.zeros( [1, N, N], device=laplacian.device, dtype=torch.float ) second_laplacian = laplacian third_laplacian = ( 2 * torch.matmul(laplacian, second_laplacian) ) - first_laplacian forth_laplacian = ( 2 * torch.matmul(laplacian, third_laplacian) - second_laplacian ) multi_order_laplacian = torch.cat( [first_laplacian, second_laplacian, third_laplacian, forth_laplacian], dim=0 ) return multi_order_laplacian def latent_correlation_layer(self, x): input, _ = self.GRU(x.permute(2, 0, 1).contiguous()) input = input.permute(1, 0, 2).contiguous() attention = self.self_graph_attention(input) attention = torch.mean(attention, dim=0) degree = torch.sum(attention, dim=1) # laplacian is sym or not attention = 0.5 * (attention + attention.T) degree_l = torch.diag(degree) diagonal_degree_hat = torch.diag(1 / (torch.sqrt(degree) + 1e-7)) laplacian = torch.matmul( diagonal_degree_hat, torch.matmul(degree_l - attention, diagonal_degree_hat) ) mul_L = self.cheb_polynomial(laplacian) return mul_L, attention def self_graph_attention(self, input): input = input.permute(0, 2, 1).contiguous() bat, N, fea = input.size() key = torch.matmul(input, self.weight_key) query = torch.matmul(input, self.weight_query) data = key.repeat(1, 1, N).view(bat, N * N, 1) + query.repeat(1, N, 1) data = data.squeeze(2) data = data.view(bat, N, -1) data = self.leakyrelu(data) attention = F.softmax(data, dim=2) attention = self.dropout(attention) return attention def graph_fft(self, input, eigenvectors): return torch.matmul(eigenvectors, input) def forward(self, windows_batch): # Parse batch x = windows_batch["insample_y"] batch_size = x.shape[0] mul_L, attention = self.latent_correlation_layer(x) X = x.unsqueeze(1).permute(0, 1, 3, 2).contiguous() result = [] for stack_i in range(self.stack_cnt): forecast, X = self.stock_block[stack_i](X, mul_L) result.append(forecast) forecast = result[0] + result[1] forecast = self.fc(forecast) forecast = forecast.permute(0, 2, 1).contiguous() forecast = forecast.reshape( batch_size, self.h, self.loss.outputsize_multiplier * self.n_series ) forecast = self.loss.domain_map(forecast) # domain_map might have squeezed the last dimension in case n_series == 1 # Note that this fails in case of a tuple loss, but Multivariate does not support tuple losses yet. if forecast.ndim == 2: return forecast.unsqueeze(-1) else: return forecast