Commit 24eacbc0 authored by chenzk's avatar chenzk
Browse files

v1.0

parents
import pytest
from vllm.engine.async_llm_engine import RequestTracker
from vllm.outputs import RequestOutput
class DummyEvent:
def __init__(self):
self.flag = False
def set(self):
self.flag = True
def clear(self):
self.flag = False
def test_request_tracker():
tracker = RequestTracker()
tracker.new_requests_event = DummyEvent()
stream_1 = tracker.add_request("1")
assert tracker.new_requests_event.flag
new, finished = tracker.get_new_and_finished_requests()
assert not tracker.new_requests_event.flag
assert len(new) == 1
assert new[0]["request_id"] == "1"
assert not finished
assert not stream_1.finished
stream_2 = tracker.add_request("2")
stream_3 = tracker.add_request("3")
assert tracker.new_requests_event.flag
new, finished = tracker.get_new_and_finished_requests()
assert not tracker.new_requests_event.flag
assert len(new) == 2
assert new[0]["request_id"] == "2"
assert new[1]["request_id"] == "3"
assert not finished
assert not stream_2.finished
assert not stream_3.finished
# request_ids must be unique
with pytest.raises(KeyError):
tracker.add_request("1")
assert not tracker.new_requests_event.flag
tracker.abort_request("1")
new, finished = tracker.get_new_and_finished_requests()
assert len(finished) == 1
assert "1" in finished
assert not new
assert stream_1.finished
stream_4 = tracker.add_request("4")
tracker.abort_request("4")
assert tracker.new_requests_event.flag
new, finished = tracker.get_new_and_finished_requests()
assert len(finished) == 1
assert "4" in finished
assert not new
assert stream_4.finished
stream_5 = tracker.add_request("5")
assert tracker.new_requests_event.flag
tracker.process_request_output(
RequestOutput("2", "output", [], [], [], finished=True))
new, finished = tracker.get_new_and_finished_requests()
assert not tracker.new_requests_event.flag
assert len(finished) == 1
assert "2" in finished
assert len(new) == 1
assert new[0]["request_id"] == "5"
assert stream_2.finished
assert not stream_5.finished
from typing import List, Optional, Tuple
import pytest
import torch
from transformers import AutoModelForCausalLM
from vllm import LLM, SamplingParams
from vllm.transformers_utils.tokenizer import get_tokenizer
_TEST_PROMPTS = [
# pylint: disable=line-too-long
"vLLM is a high-throughput and memory-efficient inference and serving engine for LLMs.",
"Briefly describe the major milestones in the development of artificial intelligence from 1950 to 2020.",
"Compare and contrast artificial intelligence with human intelligence in terms of processing information.",
"Describe the basic components of a neural network and how it can be trained.",
"Write a short story about a robot that dreams for the first time.",
"Analyze the impact of the COVID-19 pandemic on global economic structures and future business models.",
"Explain the cultural significance of the Mona Lisa painting, and how its perception might vary in Western versus Eastern societies.",
"Translate the following English sentence into Japanese, French, and Swahili: 'The early bird catches the worm.'",
]
@pytest.fixture
def example_prompts() -> List[str]:
return _TEST_PROMPTS
_STR_DTYPE_TO_TORCH_DTYPE = {
"half": torch.half,
"bfloat16": torch.bfloat16,
"float": torch.float,
}
class HfRunner:
def __init__(
self,
model_name: str,
tokenizer_name: Optional[str] = None,
dtype: str = "half",
) -> None:
assert dtype in _STR_DTYPE_TO_TORCH_DTYPE
torch_dtype = _STR_DTYPE_TO_TORCH_DTYPE[dtype]
self.model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype=torch_dtype,
trust_remote_code=True,
).cuda()
if tokenizer_name is None:
tokenizer_name = model_name
self.tokenizer = get_tokenizer(tokenizer_name, trust_remote_code=True)
def generate(
self,
prompts: List[str],
**kwargs,
) -> List[Tuple[List[int], str]]:
outputs: List[Tuple[List[int], str]] = []
for prompt in prompts:
input_ids = self.tokenizer(prompt, return_tensors="pt").input_ids
output_ids = self.model.generate(
input_ids.cuda(),
use_cache=True,
**kwargs,
)
output_str = self.tokenizer.batch_decode(
output_ids,
skip_special_tokens=True,
clean_up_tokenization_spaces=False,
)
output_ids = output_ids.cpu().tolist()
outputs.append((output_ids, output_str))
return outputs
def generate_greedy(
self,
prompts: List[str],
max_tokens: int,
) -> List[Tuple[List[int], str]]:
outputs = self.generate(prompts,
do_sample=False,
max_new_tokens=max_tokens)
for i in range(len(outputs)):
output_ids, output_str = outputs[i]
outputs[i] = (output_ids[0], output_str[0])
return outputs
def generate_beam_search(
self,
prompts: List[str],
beam_width: int,
max_tokens: int,
) -> List[Tuple[List[int], str]]:
outputs = self.generate(prompts,
do_sample=False,
max_new_tokens=max_tokens,
num_beams=beam_width,
num_return_sequences=beam_width)
for i in range(len(outputs)):
output_ids, output_str = outputs[i]
for j in range(len(output_ids)):
output_ids[j] = [
x for x in output_ids[j]
if x != self.tokenizer.pad_token_id
]
outputs[i] = (output_ids, output_str)
return outputs
def generate_greedy_logprobs(
self,
prompts: List[str],
max_tokens: int,
) -> List[List[torch.Tensor]]:
all_logprobs = []
for prompt in prompts:
input_ids = self.tokenizer(prompt, return_tensors="pt").input_ids
output = self.model.generate(
input_ids.cuda(),
use_cache=True,
do_sample=False,
max_new_tokens=max_tokens,
output_hidden_states=True,
return_dict_in_generate=True,
)
seq_logprobs = []
for hidden_states in output.hidden_states:
last_hidden_states = hidden_states[-1][0]
logits = torch.matmul(
last_hidden_states,
self.model.get_output_embeddings().weight.t(),
)
if self.model.get_output_embeddings().bias is not None:
logits += self.model.get_output_embeddings(
).bias.unsqueeze(0)
logprobs = torch.nn.functional.log_softmax(logits,
dim=-1,
dtype=torch.float32)
seq_logprobs.append(logprobs)
all_logprobs.append(seq_logprobs)
return all_logprobs
@pytest.fixture
def hf_runner():
return HfRunner
class VllmRunner:
def __init__(
self,
model_name: str,
tokenizer_name: Optional[str] = None,
dtype: str = "half",
) -> None:
self.model = LLM(
model=model_name,
tokenizer=tokenizer_name,
trust_remote_code=True,
dtype=dtype,
swap_space=0,
)
def generate(
self,
prompts: List[str],
sampling_params: SamplingParams,
) -> List[Tuple[List[int], str]]:
req_outputs = self.model.generate(prompts,
sampling_params=sampling_params)
outputs = []
for req_output in req_outputs:
prompt_str = req_output.prompt
prompt_ids = req_output.prompt_token_ids
req_sample_output_ids = []
req_sample_output_strs = []
for sample in req_output.outputs:
output_str = sample.text
output_ids = sample.token_ids
req_sample_output_ids.append(prompt_ids + output_ids)
req_sample_output_strs.append(prompt_str + output_str)
outputs.append((req_sample_output_ids, req_sample_output_strs))
return outputs
def generate_greedy(
self,
prompts: List[str],
max_tokens: int,
) -> List[Tuple[List[int], str]]:
greedy_params = SamplingParams(temperature=0.0, max_tokens=max_tokens)
outputs = self.generate(prompts, greedy_params)
return [(output_ids[0], output_str[0])
for output_ids, output_str in outputs]
def generate_beam_search(
self,
prompts: List[str],
beam_width: int,
max_tokens: int,
) -> List[Tuple[List[int], str]]:
beam_search_params = SamplingParams(n=beam_width,
use_beam_search=True,
temperature=0.0,
max_tokens=max_tokens)
outputs = self.generate(prompts, beam_search_params)
return outputs
@pytest.fixture
def vllm_runner():
return VllmRunner
"""Test the communication operators.
Run `pytest tests/distributed/test_comm_ops.py --forked`.
"""
from multiprocessing import Process, set_start_method
import pytest
import torch
from vllm.config import ParallelConfig
from vllm.engine.ray_utils import get_open_port
from vllm.model_executor.parallel_utils.communication_op import (
tensor_model_parallel_all_reduce,
tensor_model_parallel_all_gather,
)
from vllm.worker.worker import _init_distributed_environment
def init_test_distributed_environment(pipeline_parallel_size: int,
tensor_parallel_size: int, rank: int,
distributed_init_port: str):
parallel_config = ParallelConfig(pipeline_parallel_size,
tensor_parallel_size,
worker_use_ray=True)
distributed_init_method = f"tcp://localhost:{distributed_init_port}"
torch.cuda.set_device(rank)
_init_distributed_environment(parallel_config, rank,
distributed_init_method)
def all_reduce_test_worker(tensor_parallel_size: int, rank: int,
distributed_init_port: str):
init_test_distributed_environment(1, tensor_parallel_size, rank,
distributed_init_port)
num_elements = 8
all_tensors = [
torch.arange(num_elements, dtype=torch.float32, device="cuda") *
(r + 1) for r in range(tensor_parallel_size)
]
expected = torch.sum(torch.stack(all_tensors, dim=0), dim=0)
t = all_tensors[rank]
t = tensor_model_parallel_all_reduce(t)
assert torch.allclose(t, expected)
def all_gather_test_worker(tensor_parallel_size: int, rank: int,
distributed_init_port: str):
init_test_distributed_environment(1, tensor_parallel_size, rank,
distributed_init_port)
num_dimensions = 3
tensor_size = list(range(2, num_dimensions + 2))
total_size = 1
for s in tensor_size:
total_size *= s
for all_gather_dimension in range(num_dimensions):
all_tensors = [
torch.arange(total_size, dtype=torch.float32,
device="cuda").reshape(tensor_size) * (r + 1)
for r in range(tensor_parallel_size)
]
expected = torch.cat(all_tensors, dim=all_gather_dimension)
t = all_tensors[rank]
t = tensor_model_parallel_all_gather(t, all_gather_dimension)
assert torch.allclose(t, expected)
@pytest.mark.skipif(torch.cuda.device_count() < 2,
reason="Need at least 2 GPUs to run the test.")
@pytest.mark.parametrize("tensor_parallel_size", [2])
@pytest.mark.parametrize("test_target",
[all_reduce_test_worker, all_gather_test_worker])
def test_multi_process_tensor_parallel(tensor_parallel_size, test_target):
set_start_method("spawn", force=True)
distributed_init_port = get_open_port()
processes = []
for rank in range(tensor_parallel_size):
p = Process(target=test_target,
args=(tensor_parallel_size, rank, distributed_init_port))
p.start()
processes.append(p)
for p in processes:
p.join()
assert all(p.exitcode == 0 for p in processes)
import pytest
from transformers import AutoTokenizer
from vllm.transformers_utils.tokenizer import detokenize_incrementally
TRUTH = [
# pylint: disable=line-too-long
"Hello here, this is a simple test",
"vLLM is a high-throughput and memory-efficient inference and serving engine for LLMs. It is designed to be used in production environments, where inference and serving",
"我很感谢你的热情"
]
TOKENIZERS = [
"facebook/opt-125m",
"gpt2",
"bigcode/tiny_starcoder_py",
"EleutherAI/gpt-j-6b",
"EleutherAI/pythia-70m",
"bigscience/bloom-560m",
"mosaicml/mpt-7b",
"tiiuae/falcon-7b",
"meta-llama/Llama-2-7b-hf",
"codellama/CodeLlama-7b-hf",
]
def _run_incremental_decode(tokenizer, all_input_ids,
skip_special_tokens: bool):
decoded_text = ""
offset = 0
token_offset = 0
prev_tokens = None
for i in range(len(all_input_ids)):
new_tokens, text, offset, token_offset = detokenize_incrementally(
tokenizer,
all_input_ids[:i + 1],
prev_tokens,
offset,
token_offset,
skip_special_tokens=skip_special_tokens)
decoded_text += text
if prev_tokens is None:
prev_tokens = new_tokens
else:
prev_tokens += new_tokens
return decoded_text
@pytest.mark.parametrize("truth", TRUTH)
@pytest.mark.parametrize("tokenizer_id", TOKENIZERS)
@pytest.mark.parametrize("skip_special_tokens", (True, False))
def test_decode_streaming(tokenizer_id, truth, skip_special_tokens):
tokenizer = AutoTokenizer.from_pretrained(tokenizer_id)
all_input_ids = tokenizer(truth, add_special_tokens=False)["input_ids"]
if skip_special_tokens:
all_input_ids = ([tokenizer.bos_token_id]
if tokenizer.bos_token_id is not None else
[]) + all_input_ids + [tokenizer.eos_token_id]
decoded_text = _run_incremental_decode(
tokenizer, all_input_ids, skip_special_tokens=skip_special_tokens)
assert decoded_text == truth
from typing import List, Tuple
import pytest
import torch
def create_kv_caches(
num_blocks: int,
block_size: int,
num_layers: int,
num_heads: int,
head_size: int,
dtype: torch.dtype,
seed: int,
) -> Tuple[List[torch.Tensor], List[torch.Tensor]]:
torch.random.manual_seed(seed)
torch.cuda.manual_seed(seed)
scale = head_size**-0.5
x = 16 // torch.tensor([], dtype=dtype).element_size()
key_cache_shape = (num_blocks, num_heads, head_size // x, block_size, x)
key_caches = []
for _ in range(num_layers):
key_cache = torch.empty(size=key_cache_shape,
dtype=dtype,
device='cuda')
key_cache.uniform_(-scale, scale)
key_caches.append(key_cache)
value_cache_shape = (num_blocks, num_heads, head_size, block_size)
value_caches = []
for _ in range(num_layers):
value_cache = torch.empty(size=value_cache_shape,
dtype=dtype,
device='cuda')
value_cache.uniform_(-scale, scale)
value_caches.append(value_cache)
return key_caches, value_caches
@pytest.fixture()
def kv_cache_factory():
return create_kv_caches
import pytest
import torch
import torch.nn.functional as F
from transformers.activations import get_activation
from vllm import activation_ops
DTYPES = [torch.half, torch.bfloat16, torch.float]
NUM_TOKENS = [7, 83, 2048] # Arbitrary values for testing
D = [512, 4096, 5120, 13824] # Arbitrary values for testing
SEEDS = [0]
def ref_silu_and_mul(x: torch.Tensor) -> torch.Tensor:
x1, x2 = x.chunk(chunks=2, dim=1)
return F.silu(x1) * x2
@pytest.mark.parametrize("num_tokens", NUM_TOKENS)
@pytest.mark.parametrize("d", D)
@pytest.mark.parametrize("dtype", DTYPES)
@pytest.mark.parametrize("seed", SEEDS)
@torch.inference_mode()
def test_silu_and_mul(
num_tokens: int,
d: int,
dtype: torch.dtype,
seed: int,
) -> None:
torch.random.manual_seed(seed)
torch.cuda.manual_seed(seed)
x = torch.randn(num_tokens, 2 * d, dtype=dtype, device="cuda")
out = torch.empty(num_tokens, d, dtype=dtype, device="cuda")
activation_ops.silu_and_mul(out, x)
ref_out = ref_silu_and_mul(x)
assert torch.allclose(out, ref_out, atol=1e-5, rtol=1e-5)
@pytest.mark.parametrize("num_tokens", NUM_TOKENS)
@pytest.mark.parametrize("d", D)
@pytest.mark.parametrize("dtype", DTYPES)
@pytest.mark.parametrize("seed", SEEDS)
@torch.inference_mode()
def test_gelu_new(
num_tokens: int,
d: int,
dtype: torch.dtype,
seed: int,
) -> None:
torch.random.manual_seed(seed)
torch.cuda.manual_seed(seed)
x = torch.randn(num_tokens, d, dtype=dtype, device="cuda")
out = torch.empty(num_tokens, d, dtype=dtype, device="cuda")
activation_ops.gelu_new(out, x)
ref_out = get_activation("gelu_new")(x)
assert torch.allclose(out, ref_out, atol=1e-5, rtol=1e-5)
@pytest.mark.parametrize("num_tokens", NUM_TOKENS)
@pytest.mark.parametrize("d", D)
@pytest.mark.parametrize("dtype", DTYPES)
@pytest.mark.parametrize("seed", SEEDS)
def test_gelu_fast(
num_tokens: int,
d: int,
dtype: torch.dtype,
seed: int,
) -> None:
torch.random.manual_seed(seed)
torch.cuda.manual_seed(seed)
x = torch.randn(num_tokens, d, dtype=dtype, device="cuda")
out = torch.empty(num_tokens, d, dtype=dtype, device="cuda")
activation_ops.gelu_fast(out, x)
ref_out = get_activation("gelu_fast")(x)
assert torch.allclose(out, ref_out, atol=1e-5, rtol=1e-5)
import random
from typing import List, Optional, Tuple
import pytest
import torch
from xformers import ops as xops
from xformers.ops.fmha.attn_bias import BlockDiagonalCausalMask
from vllm import attention_ops
from vllm.utils import get_max_shared_memory_bytes
FLOAT32_BYTES = torch.finfo(torch.float).bits // 8
# This will change depending on the compute capability.
# - 512 as a buffer
MAX_SEQ_LEN = get_max_shared_memory_bytes() // FLOAT32_BYTES - 512
NUM_BLOCKS = 40000 # Arbitrary values for testing
PARTITION_SIZE = 512
DTYPES = [torch.half, torch.bfloat16, torch.float]
NUM_GEN_SEQS = [7] # Arbitrary values for testing
NUM_PREFILL_SEQS = [3] # Arbitrary values for testing
NUM_HEADS = [(40, 40), (64, 8)] # Arbitrary values for testing
HEAD_SIZES = [64, 80, 96, 112, 128, 256]
BLOCK_SIZES = [16, 32]
USE_ALIBI = [False, True]
SEEDS = [0]
def ref_masked_attention(
query: torch.Tensor,
key: torch.Tensor,
value: torch.Tensor,
scale: float,
attn_mask: Optional[torch.Tensor] = None,
) -> torch.Tensor:
attn_weights = scale * torch.einsum("qhd,khd->hqk", query, key).float()
if attn_mask is not None:
attn_weights = attn_weights + attn_mask.float()
attn_weights = torch.softmax(attn_weights, dim=-1).to(value.dtype)
out = torch.einsum("hqk,khd->qhd", attn_weights, value)
return out
def ref_single_query_cached_kv_attention(
output: torch.Tensor,
query: torch.Tensor,
num_queries_per_kv: int,
key_cache: torch.Tensor,
value_cache: torch.Tensor,
block_tables: torch.Tensor,
context_lens: torch.Tensor,
scale: float,
alibi_slopes: Optional[torch.Tensor],
) -> None:
num_query_heads = query.shape[1]
num_kv_heads = value_cache.shape[1]
head_size = value_cache.shape[2]
block_size = value_cache.shape[3]
num_seqs = query.shape[0]
block_tables = block_tables.cpu().tolist()
context_lens = context_lens.cpu().tolist()
for i in range(num_seqs):
q = query[i].unsqueeze(0)
block_table = block_tables[i]
context_len = int(context_lens[i])
keys = []
values = []
for j in range(context_len):
block_number = int(block_table[j // block_size])
block_offset = j % block_size
k = key_cache[block_number, :, :, block_offset, :]
k = k.reshape(num_kv_heads, head_size)
keys.append(k)
v = value_cache[block_number, :, :, block_offset]
values.append(v)
keys = torch.stack(keys, dim=0)
values = torch.stack(values, dim=0)
if num_queries_per_kv > 1:
# Handle MQA and GQA
keys = torch.repeat_interleave(keys, num_queries_per_kv, dim=1)
values = torch.repeat_interleave(values, num_queries_per_kv, dim=1)
alibi_bias = None
if alibi_slopes is not None:
# Create the ALiBi bias used in the paged attention kernel.
position_ids = torch.arange(context_len, device="cuda").int()
alibi_bias = (position_ids - context_len + 1).float()
alibi_bias = alibi_slopes.view(-1, 1, 1) * alibi_bias.view(
1, 1, -1)
out = ref_masked_attention(q, keys, values, scale, alibi_bias)
out = out.view(num_query_heads, head_size)
output[i].copy_(out, non_blocking=True)
@pytest.mark.parametrize("version", ["v1", "v2"])
@pytest.mark.parametrize("num_seqs", NUM_GEN_SEQS)
@pytest.mark.parametrize("num_heads", NUM_HEADS)
@pytest.mark.parametrize("head_size", HEAD_SIZES)
@pytest.mark.parametrize("use_alibi", USE_ALIBI)
@pytest.mark.parametrize("block_size", BLOCK_SIZES)
@pytest.mark.parametrize("dtype", DTYPES)
@pytest.mark.parametrize("seed", SEEDS)
def test_paged_attention(
kv_cache_factory,
version: str,
num_seqs: int,
num_heads: Tuple[int, int],
head_size: int,
use_alibi: bool,
block_size: int,
dtype: torch.dtype,
seed: int,
) -> None:
random.seed(seed)
torch.random.manual_seed(seed)
torch.cuda.manual_seed(seed)
scale = float(1.0 / (head_size**0.5))
num_query_heads, num_kv_heads = num_heads
query = torch.empty(num_seqs,
num_query_heads,
head_size,
dtype=dtype,
device="cuda")
query.uniform_(-scale, scale)
assert num_query_heads % num_kv_heads == 0
num_queries_per_kv = num_query_heads // num_kv_heads
head_mapping = torch.repeat_interleave(
torch.arange(num_kv_heads, dtype=torch.int32, device="cuda"),
num_queries_per_kv)
alibi_slopes = None
if use_alibi:
alibi_slopes = torch.randn(num_query_heads,
dtype=torch.float,
device="cuda")
context_lens = [random.randint(1, MAX_SEQ_LEN) for _ in range(num_seqs)]
context_lens[-1] = MAX_SEQ_LEN
max_context_len = max(context_lens)
context_lens = torch.tensor(context_lens, dtype=torch.int, device="cuda")
# Create the block tables.
max_num_blocks_per_seq = (max_context_len + block_size - 1) // block_size
block_tables = []
for _ in range(num_seqs):
block_table = [
random.randint(0, NUM_BLOCKS - 1)
for _ in range(max_num_blocks_per_seq)
]
block_tables.append(block_table)
block_tables = torch.tensor(block_tables, dtype=torch.int, device="cuda")
# Create the KV caches.
key_caches, value_caches = kv_cache_factory(NUM_BLOCKS, block_size, 1,
num_kv_heads, head_size, dtype,
seed)
key_cache, value_cache = key_caches[0], value_caches[0]
# Call the paged attention kernel.
output = torch.empty_like(query)
if version == "v1":
attention_ops.paged_attention_v1(
output,
query,
key_cache,
value_cache,
head_mapping,
scale,
block_tables,
context_lens,
block_size,
max_context_len,
alibi_slopes,
)
elif version == "v2":
num_partitions = ((max_context_len + PARTITION_SIZE - 1) //
PARTITION_SIZE)
assert PARTITION_SIZE % block_size == 0
num_seqs, num_heads, head_size = output.shape
tmp_output = torch.empty(
size=(num_seqs, num_heads, num_partitions, head_size),
dtype=output.dtype,
device=output.device,
)
exp_sums = torch.empty(
size=(num_seqs, num_heads, num_partitions),
dtype=torch.float32,
device=output.device,
)
max_logits = torch.empty_like(exp_sums)
attention_ops.paged_attention_v2(
output,
exp_sums,
max_logits,
tmp_output,
query,
key_cache,
value_cache,
head_mapping,
scale,
block_tables,
context_lens,
block_size,
max_context_len,
alibi_slopes,
)
else:
assert False, f"Unknown version: {version}"
# Run the reference implementation.
ref_output = torch.empty_like(query)
ref_single_query_cached_kv_attention(
ref_output,
query,
num_queries_per_kv,
key_cache,
value_cache,
block_tables,
context_lens,
scale,
alibi_slopes,
)
# NOTE(woosuk): Due to the kernel-level differences in the two
# implementations, there is a small numerical difference in the two
# outputs. Thus, we use a relaxed tolerance for the test.
assert torch.allclose(output, ref_output, atol=1e-3, rtol=1e-5)
def ref_multi_query_kv_attention(
cu_seq_lens: List[int],
query: torch.Tensor,
key: torch.Tensor,
value: torch.Tensor,
scale: float,
dtype: torch.dtype,
) -> torch.Tensor:
num_seqs = len(cu_seq_lens) - 1
ref_outputs = []
for i in range(num_seqs):
start_idx = cu_seq_lens[i]
end_idx = cu_seq_lens[i + 1]
seq_len = end_idx - start_idx
# Create attention mask.
attn_mask = torch.triu(torch.ones(seq_len, seq_len, dtype=dtype),
diagonal=1)
attn_mask = attn_mask * torch.finfo(dtype).min
attn_mask = attn_mask.to(dtype=dtype, device="cuda")
ref_output = ref_masked_attention(
query[start_idx:end_idx],
key[start_idx:end_idx],
value[start_idx:end_idx],
scale,
attn_mask=attn_mask,
)
ref_outputs.append(ref_output)
ref_output = torch.cat(ref_outputs, dim=0)
return ref_output
# TODO(woosuk): Add tests for USE_ALIBI=True.
@pytest.mark.parametrize("num_seqs", NUM_PREFILL_SEQS)
@pytest.mark.parametrize("num_heads", NUM_HEADS)
@pytest.mark.parametrize("head_size", HEAD_SIZES)
@pytest.mark.parametrize("dtype", DTYPES)
@pytest.mark.parametrize("seed", SEEDS)
@torch.inference_mode()
def test_multi_query_kv_attention(
num_seqs: int,
num_heads: Tuple[int, int],
head_size: int,
dtype: torch.dtype,
seed: int,
) -> None:
random.seed(seed)
torch.random.manual_seed(seed)
torch.cuda.manual_seed(seed)
# MAX_SEQ_LEN sometimes causes OOM in the reference implementation.
# As the xformers library is already tested with its own tests, we can use
# a smaller MAX_SEQ_LEN here.
max_len = min(MAX_SEQ_LEN, 4096)
seq_lens = random.sample(range(1, max_len), num_seqs)
num_tokens = sum(seq_lens)
scale = float(1.0 / (head_size**0.5))
num_query_heads, num_kv_heads = num_heads
qkv = torch.empty(num_tokens,
num_query_heads + 2 * num_kv_heads,
head_size,
dtype=dtype,
device="cuda")
qkv.uniform_(-scale, scale)
query, key, value = qkv.split(
[num_query_heads, num_kv_heads, num_kv_heads], dim=1)
num_queries_per_kv = num_query_heads // num_kv_heads
if num_queries_per_kv > 1:
# Handle MQA and GQA
key = torch.repeat_interleave(key, num_queries_per_kv, dim=1)
value = torch.repeat_interleave(value, num_queries_per_kv, dim=1)
attn_bias = BlockDiagonalCausalMask.from_seqlens(seq_lens)
output = xops.memory_efficient_attention_forward(
query.unsqueeze(0),
key.unsqueeze(0),
value.unsqueeze(0),
attn_bias=attn_bias,
p=0.0,
scale=scale,
)
output = output.squeeze(0)
cu_seq_lens = [0]
for seq_len in seq_lens:
cu_seq_lens.append(cu_seq_lens[-1] + seq_len)
ref_output = ref_multi_query_kv_attention(
cu_seq_lens,
query,
key,
value,
scale,
dtype,
)
assert torch.allclose(output, ref_output, atol=1e-3, rtol=1e-5)
import random
import pytest
import torch
from vllm import cache_ops
DTYPES = [torch.half, torch.bfloat16, torch.float]
NUM_TOKENS = [83] # Arbitrary values for testing
NUM_LAYERS = [1] # Arbitrary values for testing
NUM_HEADS = [8] # Arbitrary values for testing
HEAD_SIZES = [64, 80, 96, 112, 128, 256]
BLOCK_SIZES = [8, 16, 32]
NUM_BLOCKS = [1024, 36000] # Arbitrary values for testing
NUM_MAPPINGS = [256] # Arbitrary values for testing
SEEDS = [0]
@pytest.mark.parametrize("num_mappings", NUM_MAPPINGS)
@pytest.mark.parametrize("num_layers", NUM_LAYERS)
@pytest.mark.parametrize("num_heads", NUM_HEADS)
@pytest.mark.parametrize("head_size", HEAD_SIZES)
@pytest.mark.parametrize("block_size", BLOCK_SIZES)
@pytest.mark.parametrize("num_blocks", NUM_BLOCKS)
@pytest.mark.parametrize("dtype", DTYPES)
@pytest.mark.parametrize("seed", SEEDS)
@torch.inference_mode()
def test_copy_blocks(
kv_cache_factory,
num_mappings: int,
num_layers: int,
num_heads: int,
head_size: int,
block_size: int,
num_blocks: int,
dtype: torch.dtype,
seed: int,
) -> None:
random.seed(seed)
torch.random.manual_seed(seed)
torch.cuda.manual_seed(seed)
# Generate random block mappings where each source block is mapped to two
# destination blocks.
assert 2 * num_mappings <= num_blocks
src_blocks = random.sample(range(num_blocks), num_mappings)
remainig_blocks = list(set(range(num_blocks)) - set(src_blocks))
dst_blocks = random.sample(remainig_blocks, 2 * num_mappings)
block_mapping = {}
for i in range(num_mappings):
src = src_blocks[i]
dst1 = dst_blocks[2 * i]
dst2 = dst_blocks[2 * i + 1]
block_mapping[src] = [dst1, dst2]
# Create the KV caches.
key_caches, value_caches = kv_cache_factory(num_blocks, block_size,
num_layers, num_heads,
head_size, dtype, seed)
# Clone the KV caches.
cloned_key_caches = [key_cache.clone() for key_cache in key_caches]
cloned_value_caches = [value_cache.clone() for value_cache in value_caches]
# Call the copy blocks kernel.
cache_ops.copy_blocks(key_caches, value_caches, block_mapping)
# Run the reference implementation.
for src, dsts in block_mapping.items():
for dst in dsts:
for cloned_key_cache in cloned_key_caches:
cloned_key_cache[dst].copy_(cloned_key_cache[src])
for cloned_value_cache in cloned_value_caches:
cloned_value_cache[dst].copy_(cloned_value_cache[src])
# Compare the results.
for key_cache, cloned_key_cache in zip(key_caches, cloned_key_caches):
assert torch.allclose(key_cache, cloned_key_cache)
for value_cache, cloned_value_cache in zip(value_caches,
cloned_value_caches):
assert torch.allclose(value_cache, cloned_value_cache)
@pytest.mark.parametrize("num_tokens", NUM_TOKENS)
@pytest.mark.parametrize("num_heads", NUM_HEADS)
@pytest.mark.parametrize("head_size", HEAD_SIZES)
@pytest.mark.parametrize("block_size", BLOCK_SIZES)
@pytest.mark.parametrize("num_blocks", NUM_BLOCKS)
@pytest.mark.parametrize("dtype", DTYPES)
@pytest.mark.parametrize("seed", SEEDS)
@torch.inference_mode()
def test_reshape_and_cache(
kv_cache_factory,
num_tokens: int,
num_heads: int,
head_size: int,
block_size: int,
num_blocks: int,
dtype: torch.dtype,
seed: int,
) -> None:
random.seed(seed)
torch.random.manual_seed(seed)
torch.cuda.manual_seed(seed)
# Create a random slot mapping.
num_slots = block_size * num_blocks
slot_mapping = random.sample(range(num_slots), num_tokens)
slot_mapping = torch.tensor(slot_mapping, dtype=torch.long, device="cuda")
qkv = torch.randn(num_tokens,
3,
num_heads,
head_size,
dtype=dtype,
device="cuda")
_, key, value = qkv.unbind(dim=1)
# Create the KV caches.
key_caches, value_caches = kv_cache_factory(num_blocks, block_size, 1,
num_heads, head_size, dtype,
seed)
key_cache, value_cache = key_caches[0], value_caches[0]
# Clone the KV caches.
cloned_key_cache = key_cache.clone()
cloned_value_cache = value_cache.clone()
# Call the reshape_and_cache kernel.
cache_ops.reshape_and_cache(key, value, key_cache, value_cache,
slot_mapping)
# Run the reference implementation.
reshaped_key = key.reshape(num_tokens, *key_cache[0, :, :, 0, :].shape)
block_indicies = torch.div(slot_mapping, block_size, rounding_mode="floor")
block_indicies = block_indicies.cpu().tolist()
block_offsets = slot_mapping % block_size
block_offsets = block_offsets.cpu().tolist()
for i in range(num_tokens):
block_idx = block_indicies[i]
block_offset = block_offsets[i]
cloned_key_cache[block_idx, :, :, block_offset, :] = reshaped_key[i]
cloned_value_cache[block_idx, :, :, block_offset] = value[i]
assert torch.allclose(key_cache, cloned_key_cache)
assert torch.allclose(value_cache, cloned_value_cache)
import pytest
import torch
import torch.nn as nn
from vllm import layernorm_ops
DTYPES = [torch.half, torch.bfloat16, torch.float]
HIDDEN_SIZES = [67, 768, 2048, 5120, 8192] # Arbitrary values for testing
NUM_TOKENS = [7, 83, 4096] # Arbitrary values for testing
SEEDS = [0]
class RefRMSNorm(nn.Module):
def __init__(self, hidden_size, eps=1e-6):
super().__init__()
weight = torch.empty(hidden_size)
weight.normal_(mean=1.0, std=0.1)
self.weight = nn.Parameter(weight)
self.variance_epsilon = eps
def forward(self, hidden_states):
input_dtype = hidden_states.dtype
hidden_states = hidden_states.to(torch.float32)
variance = hidden_states.pow(2).mean(-1, keepdim=True)
hidden_states = hidden_states * torch.rsqrt(variance +
self.variance_epsilon)
return self.weight * hidden_states.to(input_dtype)
@pytest.mark.parametrize("num_tokens", NUM_TOKENS)
@pytest.mark.parametrize("hidden_size", HIDDEN_SIZES)
@pytest.mark.parametrize("dtype", DTYPES)
@pytest.mark.parametrize("seed", SEEDS)
@torch.inference_mode()
def test_rms_norm(
num_tokens: int,
hidden_size: int,
dtype: torch.dtype,
seed: int,
) -> None:
torch.random.manual_seed(seed)
torch.cuda.manual_seed(seed)
scale = float(hidden_size**-0.5)
x = torch.empty(num_tokens, hidden_size, dtype=dtype, device="cuda")
x.uniform_(-scale, scale)
ref = RefRMSNorm(hidden_size).to(dtype).cuda()
out = torch.empty_like(x)
layernorm_ops.rms_norm(
out,
x,
ref.weight.data,
ref.variance_epsilon,
)
ref_out = ref(x)
assert torch.allclose(out, ref_out, atol=1e-2, rtol=1e-5)
from typing import Optional, Tuple
import pytest
import torch
import torch.nn as nn
import torch.nn.functional as F
from vllm import pos_encoding_ops
IS_NEOX_STYLE = [True, False]
DTYPES = [torch.half, torch.bfloat16, torch.float]
HEAD_SIZES = [64, 80, 96, 112, 128, 256]
ROTARY_DIMS = [None, 32] # None means rotary dim == head size
NUM_HEADS = [7, 12, 40, 52] # Arbitrary values for testing
NUM_TOKENS = [11, 83, 2048] # Arbitrary values for testing
SEEDS = [0]
def rotate_neox(x: torch.Tensor) -> torch.Tensor:
x1 = x[..., :x.shape[-1] // 2]
x2 = x[..., x.shape[-1] // 2:]
return torch.cat((-x2, x1), dim=-1)
def rotate_gptj(x: torch.Tensor) -> torch.Tensor:
x1 = x[..., ::2]
x2 = x[..., 1::2]
x = torch.stack((-x2, x1), dim=-1)
return x.flatten(-2)
def apply_rope(
q: torch.Tensor,
k: torch.Tensor,
cos: torch.Tensor,
sin: torch.Tensor,
is_neox_style: bool,
) -> Tuple[torch.Tensor, torch.Tensor]:
rotate_fn = rotate_neox if is_neox_style else rotate_gptj
q_embed = (q * cos) + (rotate_fn(q) * sin)
k_embed = (k * cos) + (rotate_fn(k) * sin)
return q_embed, k_embed
class RefRotaryEmbedding(nn.Module):
"""Reference implementation of rotary embedding."""
def __init__(
self,
dim: int,
is_neox_style: bool,
max_position_embeddings: int = 8192,
base: int = 10000,
) -> None:
super().__init__()
self.rotary_dim = dim
self.is_neox_style = is_neox_style
self.max_position_embeddings = max_position_embeddings
# Create cos and sin embeddings.
inv_freq = 1.0 / (base**(torch.arange(0, dim, 2) / dim))
t = torch.arange(max_position_embeddings).float()
freqs = torch.einsum("i,j->ij", t, inv_freq.float())
if is_neox_style:
emb = torch.cat((freqs, freqs), dim=-1)
else:
emb = torch.repeat_interleave(freqs, 2, -1)
cos = emb.cos().to(dtype=inv_freq.dtype)
sin = emb.sin().to(dtype=inv_freq.dtype)
self.register_buffer("cos_cached", cos, persistent=False)
self.register_buffer("sin_cached", sin, persistent=False)
def forward(
self,
positions: torch.Tensor, # [num_tokens]
query: torch.Tensor, # [num_tokens, num_heads, head_size]
key: torch.Tensor, # [num_tokens, num_heads, head_size]
) -> Tuple[torch.Tensor, torch.Tensor]:
query_rot = query[..., :self.rotary_dim]
query_pass = query[..., self.rotary_dim:]
key_rot = key[..., :self.rotary_dim]
key_pass = key[..., self.rotary_dim:]
query_rot = query_rot.transpose(0, 1)
key_rot = key_rot.transpose(0, 1)
cos = F.embedding(positions, self.cos_cached)
sin = F.embedding(positions, self.sin_cached)
query_rot, key_rot = apply_rope(query_rot, key_rot, cos, sin,
self.is_neox_style)
query_rot = query_rot.transpose(0, 1).contiguous()
key_rot = key_rot.transpose(0, 1).contiguous()
query = torch.cat((query_rot, query_pass), dim=-1)
key = torch.cat((key_rot, key_pass), dim=-1)
# Output query/key shape: [num_tokens, num_tokens, head_size]
return query, key
@pytest.mark.parametrize("is_neox_style", IS_NEOX_STYLE)
@pytest.mark.parametrize("num_tokens", NUM_TOKENS)
@pytest.mark.parametrize("num_heads", NUM_HEADS)
@pytest.mark.parametrize("head_size", HEAD_SIZES)
@pytest.mark.parametrize("rotary_dim", ROTARY_DIMS)
@pytest.mark.parametrize("dtype", DTYPES)
@pytest.mark.parametrize("seed", SEEDS)
@torch.inference_mode()
def test_rotary_embedding(
is_neox_style: bool,
num_tokens: int,
num_heads: int,
head_size: int,
rotary_dim: Optional[int],
dtype: torch.dtype,
seed: int,
max_position: int = 8192,
base: int = 10000,
) -> None:
if rotary_dim is None:
rotary_dim = head_size
torch.random.manual_seed(seed)
torch.cuda.manual_seed(seed)
positions = torch.randint(0, max_position, (num_tokens, ), device="cuda")
query = torch.randn(num_tokens,
num_heads * head_size,
dtype=dtype,
device="cuda")
key = torch.randn(num_tokens,
num_heads * head_size,
dtype=dtype,
device="cuda")
# Create the rotary embedding.
inv_freq = 1.0 / (base**(
torch.arange(0, rotary_dim, 2, dtype=torch.float) / rotary_dim))
t = torch.arange(max_position).float()
freqs = torch.einsum("i,j -> ij", t, inv_freq)
cos = freqs.cos()
sin = freqs.sin()
cos_sin_cache = torch.cat((cos, sin), dim=-1)
cos_sin_cache = cos_sin_cache.to(dtype=dtype, device="cuda")
# Run the kernel. The kernel is in-place, so we need to clone the inputs.
out_query = query.clone()
out_key = key.clone()
pos_encoding_ops.rotary_embedding(
positions,
out_query,
out_key,
head_size,
cos_sin_cache,
is_neox_style,
)
# Run the reference implementation.
ref_rotary_embedding = RefRotaryEmbedding(
dim=rotary_dim,
is_neox_style=is_neox_style,
max_position_embeddings=max_position,
base=base,
).to(dtype=dtype, device="cuda")
ref_query, ref_key = ref_rotary_embedding(
positions,
query.view(num_tokens, num_heads, head_size),
key.view(num_tokens, num_heads, head_size),
)
ref_query = ref_query.view(num_tokens, num_heads * head_size)
ref_key = ref_key.view(num_tokens, num_heads * head_size)
# Compare the results.
assert torch.allclose(out_query, ref_query, atol=1e-5, rtol=1e-5)
assert torch.allclose(out_key, ref_key, atol=1e-5, rtol=1e-5)
"""Compare the outputs of HF and vLLM when using greedy sampling.
Run `pytest tests/models/test_models.py --forked`.
"""
import pytest
MODELS = [
"facebook/opt-125m",
"meta-llama/Llama-2-7b-hf",
"mistralai/Mistral-7B-v0.1",
"tiiuae/falcon-7b",
"gpt2",
"bigcode/tiny_starcoder_py",
"EleutherAI/gpt-j-6b",
"EleutherAI/pythia-70m",
"bigscience/bloom-560m",
"mosaicml/mpt-7b",
"microsoft/phi-1_5",
]
@pytest.mark.parametrize("model", MODELS)
@pytest.mark.parametrize("dtype", ["half"])
@pytest.mark.parametrize("max_tokens", [128])
def test_models(
hf_runner,
vllm_runner,
example_prompts,
model: str,
dtype: str,
max_tokens: int,
) -> None:
hf_model = hf_runner(model, dtype=dtype)
hf_outputs = hf_model.generate_greedy(example_prompts, max_tokens)
del hf_model
vllm_model = vllm_runner(model, dtype=dtype)
vllm_outputs = vllm_model.generate_greedy(example_prompts, max_tokens)
del vllm_model
for i in range(len(example_prompts)):
hf_output_ids, hf_output_str = hf_outputs[i]
vllm_output_ids, vllm_output_str = vllm_outputs[i]
assert hf_output_str == vllm_output_str, (
f"Test{i}:\nHF: {hf_output_str!r}\nvLLM: {vllm_output_str!r}")
assert hf_output_ids == vllm_output_ids, (
f"Test{i}:\nHF: {hf_output_ids}\nvLLM: {vllm_output_ids}")
"""Compare the outputs of HF and vLLM when using beam search.
Run `pytest tests/samplers/test_beam_search.py --forked`.
"""
import pytest
# FIXME(zhuohan): The test can not pass if we:
# 1. Increase max_tokens to 256.
# 2. Increase beam_width to 8.
# 3. Use the model "huggyllama/llama-7b".
MAX_TOKENS = [128]
BEAM_WIDTHS = [4]
MODELS = ["facebook/opt-125m"]
@pytest.mark.parametrize("model", MODELS)
@pytest.mark.parametrize("dtype", ["half"])
@pytest.mark.parametrize("max_tokens", MAX_TOKENS)
@pytest.mark.parametrize("beam_width", BEAM_WIDTHS)
def test_beam_search_single_input(
hf_runner,
vllm_runner,
example_prompts,
model: str,
dtype: str,
max_tokens: int,
beam_width: int,
) -> None:
hf_model = hf_runner(model, dtype=dtype)
hf_outputs = hf_model.generate_beam_search(example_prompts, beam_width,
max_tokens)
del hf_model
vllm_model = vllm_runner(model, dtype=dtype)
vllm_outputs = vllm_model.generate_beam_search(example_prompts, beam_width,
max_tokens)
del vllm_model
for i in range(len(example_prompts)):
hf_output_ids, _ = hf_outputs[i]
vllm_output_ids, _ = vllm_outputs[i]
assert len(hf_output_ids) == len(vllm_output_ids)
for j in range(len(hf_output_ids)):
assert hf_output_ids[j] == vllm_output_ids[j], (
f"Test{i} output{j}:\nHF: {hf_output_ids}\n"
f"vLLM: {vllm_output_ids}")
import pytest
import torch
from vllm import SamplingParams
MODELS = ["facebook/opt-125m"]
@pytest.mark.parametrize("model", MODELS)
@pytest.mark.parametrize("dtype", ["half"])
def test_get_prompt_logprobs(
hf_runner,
vllm_runner,
model,
dtype,
example_prompts,
):
max_tokens = 5
hf_model = hf_runner(model, dtype=dtype)
hf_logprobs = hf_model.generate_greedy_logprobs(
example_prompts,
max_tokens=max_tokens,
)
del hf_model
vllm_model = vllm_runner(model, dtype=dtype)
vllm_sampling_params = SamplingParams(max_tokens=max_tokens,
logprobs=5,
prompt_logprobs=5,
temperature=0.0)
vllm_results = vllm_model.model.generate(
example_prompts, sampling_params=vllm_sampling_params)
# Test whether logprobs are included in the results.
for result in vllm_results:
assert result.prompt_logprobs is not None
assert result.outputs[0].logprobs is not None
# Test whether prompt logprobs are consistent with HF
for vllm_result, hf_logprob in zip(vllm_results, hf_logprobs):
# Check prompt logprobs
vllm_prompt_logprobs = vllm_result.prompt_logprobs[1:]
for i, vllm_prompt_logprob_dict in enumerate(vllm_prompt_logprobs):
for token_id, logprob in vllm_prompt_logprob_dict.items():
torch.testing.assert_close(logprob,
hf_logprob[0][i][token_id].item(),
atol=1e-2,
rtol=1e-2)
vllm_sample_logprobs = vllm_result.outputs[0].logprobs
for i, vllm_sample_logprob_dict in enumerate(vllm_sample_logprobs):
for token_id, logprob in vllm_sample_logprob_dict.items():
torch.testing.assert_close(logprob,
hf_logprob[i][-1][token_id].item(),
atol=1e-2,
rtol=1e-2)
# pylint: disable=protected-access
import random
from typing import Tuple
from unittest.mock import patch
import pytest
import torch
from vllm.model_executor.layers.sampler import Sampler
from vllm.model_executor.utils import set_random_seed
from vllm.sequence import SamplingParams, SequenceData, SequenceGroupMetadata
from vllm.worker.worker import Worker
class MockLogitsSampler(Sampler):
def __init__(self, vocab_size: int, fake_logits: torch.Tensor):
super().__init__(vocab_size=vocab_size)
self.fake_logits = fake_logits
def forward(self, *args, **kwargs):
with patch("vllm.model_executor.layers.sampler._prune_hidden_states",
lambda x, y: x):
with patch("vllm.model_executor.layers.sampler._get_logits",
lambda *args, **kwargs: self.fake_logits):
return super().forward(*args, **kwargs)
def _prepare_test(
batch_size: int
) -> Tuple[torch.Tensor, torch.Tensor, MockLogitsSampler, Worker]:
vocab_size = 32000
input_tensor = torch.rand((batch_size, 1024),
device="cuda",
dtype=torch.float16)
fake_logits = torch.full((batch_size, vocab_size),
1e-2,
device=input_tensor.device,
dtype=input_tensor.dtype)
sampler = MockLogitsSampler(32000, fake_logits)
worker = Worker(None, None, None)
worker.block_size = 16
return input_tensor, fake_logits, sampler, worker
RANDOM_SEEDS = list(range(128))
@pytest.mark.parametrize("seed", RANDOM_SEEDS)
def test_sampler_all_greedy(seed: int):
set_random_seed(seed)
batch_size = random.randint(1, 256)
input_tensor, fake_logits, sampler, worker = _prepare_test(batch_size)
seq_group_metadata_list = []
for i in range(batch_size):
seq_group_metadata_list.append(
SequenceGroupMetadata(
request_id=f"test_{i}",
is_prompt=True,
seq_data={0: SequenceData([1, 2, 3])},
sampling_params=SamplingParams(temperature=0, ),
block_tables={0: [1]},
))
_, _, input_metadata = worker._prepare_inputs(seq_group_metadata_list)
sampler_output = sampler(embedding=None,
hidden_states=input_tensor,
input_metadata=input_metadata)
expected = torch.argmax(fake_logits, dim=-1)
for i, sequence_output in enumerate(sampler_output):
for nth_output in sequence_output.samples:
assert nth_output.output_token == expected[i].item()
@pytest.mark.parametrize("seed", RANDOM_SEEDS)
def test_sampler_all_random(seed: int):
set_random_seed(seed)
batch_size = random.randint(1, 256)
input_tensor, fake_logits, sampler, worker = _prepare_test(batch_size)
for i in range(batch_size):
fake_logits[i, i] = 1e2
seq_group_metadata_list = []
for i in range(batch_size):
seq_group_metadata_list.append(
SequenceGroupMetadata(
request_id=f"test_{i}",
is_prompt=True,
seq_data={0: SequenceData([1, 2, 3])},
sampling_params=SamplingParams(
temperature=1.0,
n=random.randint(1, 10),
),
block_tables={0: [1]},
))
_, _, input_metadata = worker._prepare_inputs(seq_group_metadata_list)
sampler_output = sampler(embedding=None,
hidden_states=input_tensor,
input_metadata=input_metadata)
for i, sequence_output in enumerate(sampler_output):
for nth_output in sequence_output.samples:
assert nth_output.output_token == i
@pytest.mark.parametrize("seed", RANDOM_SEEDS)
def test_sampler_all_beam(seed: int):
set_random_seed(seed)
batch_size = random.randint(1, 256)
input_tensor, _, sampler, worker = _prepare_test(batch_size)
seq_group_metadata_list = []
for i in range(batch_size):
seq_group_metadata_list.append(
SequenceGroupMetadata(
request_id=f"test_{i}",
is_prompt=True,
seq_data={0: SequenceData([1, 2, 3])},
sampling_params=SamplingParams(
temperature=0,
best_of=2,
use_beam_search=True,
),
block_tables={0: [1]},
))
_, _, input_metadata = worker._prepare_inputs(seq_group_metadata_list)
sampler(embedding=None,
hidden_states=input_tensor,
input_metadata=input_metadata)
# no assertion here as I am not sure how to determine whether
# the outputs are expected - in other words, this just tests
# whether there are no exceptions in the sampler
# when handling an all-beam search case.
@pytest.mark.parametrize("seed", RANDOM_SEEDS)
def test_sampler_mixed(seed: int):
set_random_seed(seed)
batch_size = random.randint(1, 256)
input_tensor, fake_logits, sampler, worker = _prepare_test(batch_size)
seq_group_metadata_list = []
expected_tokens = []
for i in range(batch_size):
n = 1
sampling_type = random.randint(0, 2)
if sampling_type == 0:
sampling_params = SamplingParams(temperature=0)
elif sampling_type == 1:
n = random.randint(1, 10)
sampling_params = SamplingParams(
temperature=random.random() + 0.1,
top_p=min(random.random() + 0.1, 1),
top_k=random.randint(0, 10) or -1,
n=n,
presence_penalty=random.randint(0, 1),
)
else:
sampling_params = SamplingParams(temperature=0,
use_beam_search=True,
best_of=2)
for idx in range(n):
fake_logits[i, i + idx] = 1e2
expected_tokens.append(i + idx)
seq_group_metadata_list.append(
SequenceGroupMetadata(
request_id=f"test_{i}",
is_prompt=True,
seq_data={0: SequenceData([1, 2, 3])},
sampling_params=sampling_params,
block_tables={0: [1]},
))
_, _, input_metadata = worker._prepare_inputs(seq_group_metadata_list)
sampler_output = sampler(embedding=None,
hidden_states=input_tensor,
input_metadata=input_metadata)
for i, sequence_output in enumerate(sampler_output):
if seq_group_metadata_list[i].sampling_params.use_beam_search:
continue
for nth_output in sequence_output.samples:
assert nth_output.output_token in expected_tokens
@pytest.mark.parametrize("seed", RANDOM_SEEDS)
def test_sampler_logits_processors(seed: int):
set_random_seed(seed)
batch_size = random.randint(1, 256)
input_tensor, _, sampler, worker = _prepare_test(batch_size)
# This sample logits processor gives infinite score to the i-th token,
# where i is the length of the input sequence.
# We therefore expect the output token sequence to be [0, 1, 2, ...]
def pick_ith(token_ids, logits):
logits[len(token_ids)] = float("inf")
return logits
seq_group_metadata_list = []
for i in range(batch_size):
seq_group_metadata_list.append(
SequenceGroupMetadata(
request_id=f"test_{i}",
is_prompt=True,
seq_data={0: SequenceData([1, 2, 3])},
sampling_params=SamplingParams(temperature=0,
logits_processors=[pick_ith]),
block_tables={0: [1]},
))
_, _, input_metadata = worker._prepare_inputs(seq_group_metadata_list)
sampler_output = sampler(embedding=None,
hidden_states=input_tensor,
input_metadata=input_metadata)
for i, sequence_output in enumerate(sampler_output):
for idx, nth_output in enumerate(sequence_output.samples):
assert nth_output.output_token == idx
"""Containing tests that check for regressions in vLLM's behavior.
It should include tests that are reported by users and making sure they
will never happen again.
"""
from vllm import LLM, SamplingParams
def test_duplicated_ignored_sequence_group():
"""https://github.com/vllm-project/vllm/issues/1655"""
sampling_params = SamplingParams(temperature=0.01,
top_p=0.1,
max_tokens=256)
llm = LLM(model="facebook/opt-125m",
max_num_batched_tokens=4096,
tensor_parallel_size=1)
prompts = ["This is a short prompt", "This is a very long prompt " * 1000]
outputs = llm.generate(prompts, sampling_params=sampling_params)
assert len(prompts) == len(outputs)
if __name__ == "__main__":
import pytest
pytest.main([__file__])
# pylint: disable=protected-access
import random
import torch
from vllm.sequence import SamplingParams, SequenceData, SequenceGroupMetadata
from vllm.worker.worker import Worker
def test_worker_prepare_inputs_for_prompt():
worker = Worker(None, None, None)
worker.block_size = 16
batch_size = random.randint(1, 256)
prompt_lens = []
seq_group_metadata_list = []
for i in range(batch_size):
# make sure all tokens fit into one block
prompt_len = i % (worker.block_size - 1) + 1
prompt_lens.append(prompt_len)
seq_data = list(range(prompt_len))
seq_group_metadata_list.append(
SequenceGroupMetadata(
request_id=f"test_{i}",
is_prompt=True,
seq_data={0: SequenceData(seq_data)},
sampling_params=SamplingParams(temperature=0),
block_tables={0: [1]},
))
expected_selected_token_indices = []
selected_token_start_idx = 0
max_seq_len = max(prompt_lens)
for prompt_len in prompt_lens:
expected_selected_token_indices.append(selected_token_start_idx +
prompt_len - 1)
selected_token_start_idx += max_seq_len
input_tokens, input_positions, input_metadata = worker._prepare_inputs(
seq_group_metadata_list)
assert input_tokens.shape == input_positions.shape == (batch_size,
max_seq_len)
torch.testing.assert_close(input_tokens, input_positions)
actual = input_metadata.selected_token_indices
expected = torch.tensor(expected_selected_token_indices,
device=actual.device,
dtype=actual.dtype)
torch.testing.assert_close(actual, expected)
Metadata-Version: 2.1
Name: vllm
Version: 0.2.2
Summary: A high-throughput and memory-efficient inference and serving engine for LLMs
Home-page: https://github.com/vllm-project/vllm
Author: vLLM Team
License: Apache 2.0
Project-URL: Homepage, https://github.com/vllm-project/vllm
Project-URL: Documentation, https://vllm.readthedocs.io/en/latest/
Classifier: Programming Language :: Python :: 3.8
Classifier: Programming Language :: Python :: 3.9
Classifier: Programming Language :: Python :: 3.10
Classifier: Programming Language :: Python :: 3.11
Classifier: License :: OSI Approved :: Apache Software License
Classifier: Topic :: Scientific/Engineering :: Artificial Intelligence
Requires-Python: >=3.8
Description-Content-Type: text/markdown
License-File: LICENSE
Requires-Dist: ninja
Requires-Dist: psutil
Requires-Dist: ray>=2.5.1
Requires-Dist: pandas
Requires-Dist: pyarrow
Requires-Dist: sentencepiece
Requires-Dist: numpy
Requires-Dist: einops
Requires-Dist: torch>=2.1.0
Requires-Dist: transformers>=4.34.0
Requires-Dist: xformers>=0.0.22.post7
Requires-Dist: fastapi
Requires-Dist: uvicorn[standard]
Requires-Dist: pydantic==1.10.13
<p align="center">
<picture>
<source media="(prefers-color-scheme: dark)" srcset="https://raw.githubusercontent.com/vllm-project/vllm/main/docs/source/assets/logos/vllm-logo-text-dark.png">
<img alt="vLLM" src="https://raw.githubusercontent.com/vllm-project/vllm/main/docs/source/assets/logos/vllm-logo-text-light.png" width=55%>
</picture>
</p>
<h3 align="center">
Easy, fast, and cheap LLM serving for everyone
</h3>
<p align="center">
| <a href="https://vllm.readthedocs.io/en/latest/"><b>Documentation</b></a> | <a href="https://vllm.ai"><b>Blog</b></a> | <a href="https://arxiv.org/abs/2309.06180"><b>Paper</b></a> | <a href="https://discord.gg/jz7wjKhh6g"><b>Discord</b></a> |
</p>
---
*Latest News* 🔥
- [2023/10] We hosted [the first vLLM meetup](https://lu.ma/first-vllm-meetup) in SF! Please find the meetup slides [here](https://docs.google.com/presentation/d/1QL-XPFXiFpDBh86DbEegFXBXFXjix4v032GhShbKf3s/edit?usp=sharing).
- [2023/09] We created our [Discord server](https://discord.gg/jz7wjKhh6g)! Join us to discuss vLLM and LLM serving! We will also post the latest announcements and updates there.
- [2023/09] We released our [PagedAttention paper](https://arxiv.org/abs/2309.06180) on arXiv!
- [2023/08] We would like to express our sincere gratitude to [Andreessen Horowitz](https://a16z.com/2023/08/30/supporting-the-open-source-ai-community/) (a16z) for providing a generous grant to support the open-source development and research of vLLM.
- [2023/07] Added support for LLaMA-2! You can run and serve 7B/13B/70B LLaMA-2s on vLLM with a single command!
- [2023/06] Serving vLLM On any Cloud with SkyPilot. Check out a 1-click [example](https://github.com/skypilot-org/skypilot/blob/master/llm/vllm) to start the vLLM demo, and the [blog post](https://blog.skypilot.co/serving-llm-24x-faster-on-the-cloud-with-vllm-and-skypilot/) for the story behind vLLM development on the clouds.
- [2023/06] We officially released vLLM! FastChat-vLLM integration has powered [LMSYS Vicuna and Chatbot Arena](https://chat.lmsys.org) since mid-April. Check out our [blog post](https://vllm.ai).
---
vLLM is a fast and easy-to-use library for LLM inference and serving.
vLLM is fast with:
- State-of-the-art serving throughput
- Efficient management of attention key and value memory with **PagedAttention**
- Continuous batching of incoming requests
- Optimized CUDA kernels
vLLM is flexible and easy to use with:
- Seamless integration with popular Hugging Face models
- High-throughput serving with various decoding algorithms, including *parallel sampling*, *beam search*, and more
- Tensor parallelism support for distributed inference
- Streaming outputs
- OpenAI-compatible API server
vLLM seamlessly supports many Hugging Face models, including the following architectures:
- Aquila & Aquila2 (`BAAI/AquilaChat2-7B`, `BAAI/AquilaChat2-34B`, `BAAI/Aquila-7B`, `BAAI/AquilaChat-7B`, etc.)
- Baichuan (`baichuan-inc/Baichuan-7B`, `baichuan-inc/Baichuan-13B-Chat`, etc.)
- BLOOM (`bigscience/bloom`, `bigscience/bloomz`, etc.)
- ChatGLM (`THUDM/chatglm2-6b`, `THUDM/chatglm3-6b`, etc.)
- Falcon (`tiiuae/falcon-7b`, `tiiuae/falcon-40b`, `tiiuae/falcon-rw-7b`, etc.)
- GPT-2 (`gpt2`, `gpt2-xl`, etc.)
- GPT BigCode (`bigcode/starcoder`, `bigcode/gpt_bigcode-santacoder`, etc.)
- GPT-J (`EleutherAI/gpt-j-6b`, `nomic-ai/gpt4all-j`, etc.)
- GPT-NeoX (`EleutherAI/gpt-neox-20b`, `databricks/dolly-v2-12b`, `stabilityai/stablelm-tuned-alpha-7b`, etc.)
- InternLM (`internlm/internlm-7b`, `internlm/internlm-chat-7b`, etc.)
- LLaMA & LLaMA-2 (`meta-llama/Llama-2-70b-hf`, `lmsys/vicuna-13b-v1.3`, `young-geng/koala`, `openlm-research/open_llama_13b`, etc.)
- Mistral (`mistralai/Mistral-7B-v0.1`, `mistralai/Mistral-7B-Instruct-v0.1`, etc.)
- MPT (`mosaicml/mpt-7b`, `mosaicml/mpt-30b`, etc.)
- OPT (`facebook/opt-66b`, `facebook/opt-iml-max-30b`, etc.)
- Phi-1.5 (`microsoft/phi-1_5`, etc.)
- Qwen (`Qwen/Qwen-7B`, `Qwen/Qwen-7B-Chat`, etc.)
- Yi (`01-ai/Yi-6B`, `01-ai/Yi-34B`, etc.)
Install vLLM with pip or [from source](https://vllm.readthedocs.io/en/latest/getting_started/installation.html#build-from-source):
```bash
pip install vllm
```
## Getting Started
Visit our [documentation](https://vllm.readthedocs.io/en/latest/) to get started.
- [Installation](https://vllm.readthedocs.io/en/latest/getting_started/installation.html)
- [Quickstart](https://vllm.readthedocs.io/en/latest/getting_started/quickstart.html)
- [Supported Models](https://vllm.readthedocs.io/en/latest/models/supported_models.html)
## Contributing
We welcome and value any contributions and collaborations.
Please check out [CONTRIBUTING.md](./CONTRIBUTING.md) for how to get involved.
## Citation
If you use vLLM for your research, please cite our [paper](https://arxiv.org/abs/2309.06180):
```bibtex
@inproceedings{kwon2023efficient,
title={Efficient Memory Management for Large Language Model Serving with PagedAttention},
author={Woosuk Kwon and Zhuohan Li and Siyuan Zhuang and Ying Sheng and Lianmin Zheng and Cody Hao Yu and Joseph E. Gonzalez and Hao Zhang and Ion Stoica},
booktitle={Proceedings of the ACM SIGOPS 29th Symposium on Operating Systems Principles},
year={2023}
}
```
LICENSE
MANIFEST.in
README.md
pyproject.toml
requirements.txt
setup.py
csrc/activation.cpp
csrc/activation_kernels.cu
csrc/attention.cpp
csrc/cache.cpp
csrc/cache_kernels.cu
csrc/cuda_utils.cpp
csrc/cuda_utils_kernels.cu
csrc/dispatch_utils.h
csrc/layernorm.cpp
csrc/layernorm_kernels.cu
csrc/pos_encoding.cpp
csrc/pos_encoding_kernels.cu
csrc/quantization.cpp
csrc/reduction_utils.cuh
csrc/attention/attention_dtypes.h
csrc/attention/attention_generic.cuh
csrc/attention/attention_kernels.cu
csrc/attention/attention_utils.cuh
csrc/attention/dtype_bfloat16.cuh
csrc/attention/dtype_float16.cuh
csrc/attention/dtype_float32.cuh
csrc/quantization/awq/dequantize.cuh
csrc/quantization/awq/gemm_kernels.cu
csrc/quantization/squeezellm/quant_cuda_kernel.cu
tests/test_regression.py
vllm/__init__.py
vllm/block.py
vllm/config.py
vllm/logger.py
vllm/outputs.py
vllm/py.typed
vllm/sampling_params.py
vllm/sequence.py
vllm/utils.py
vllm.egg-info/PKG-INFO
vllm.egg-info/SOURCES.txt
vllm.egg-info/dependency_links.txt
vllm.egg-info/requires.txt
vllm.egg-info/top_level.txt
vllm/core/__init__.py
vllm/core/block_manager.py
vllm/core/policy.py
vllm/core/scheduler.py
vllm/engine/__init__.py
vllm/engine/arg_utils.py
vllm/engine/async_llm_engine.py
vllm/engine/llm_engine.py
vllm/engine/ray_utils.py
vllm/entrypoints/__init__.py
vllm/entrypoints/api_server.py
vllm/entrypoints/llm.py
vllm/entrypoints/openai/__init__.py
vllm/entrypoints/openai/api_server.py
vllm/entrypoints/openai/protocol.py
vllm/model_executor/__init__.py
vllm/model_executor/input_metadata.py
vllm/model_executor/model_loader.py
vllm/model_executor/utils.py
vllm/model_executor/weight_utils.py
vllm/model_executor/layers/__init__.py
vllm/model_executor/layers/activation.py
vllm/model_executor/layers/attention.py
vllm/model_executor/layers/layernorm.py
vllm/model_executor/layers/linear.py
vllm/model_executor/layers/rotary_embedding.py
vllm/model_executor/layers/sampler.py
vllm/model_executor/layers/vocab_parallel_embedding.py
vllm/model_executor/layers/quantization/__init__.py
vllm/model_executor/layers/quantization/awq.py
vllm/model_executor/layers/quantization/base_config.py
vllm/model_executor/layers/quantization/squeezellm.py
vllm/model_executor/models/__init__.py
vllm/model_executor/models/aquila.py
vllm/model_executor/models/baichuan.py
vllm/model_executor/models/bloom.py
vllm/model_executor/models/chatglm.py
vllm/model_executor/models/cpm.py
vllm/model_executor/models/cpm_mistral.py
vllm/model_executor/models/cpm_old.py
vllm/model_executor/models/cpmmistral.py
vllm/model_executor/models/falcon.py
vllm/model_executor/models/gpt2.py
vllm/model_executor/models/gpt_bigcode.py
vllm/model_executor/models/gpt_j.py
vllm/model_executor/models/gpt_neox.py
vllm/model_executor/models/internlm.py
vllm/model_executor/models/llama.py
vllm/model_executor/models/mistral.py
vllm/model_executor/models/mpt.py
vllm/model_executor/models/opt.py
vllm/model_executor/models/phi_1_5.py
vllm/model_executor/models/qwen.py
vllm/model_executor/models/yi.py
vllm/model_executor/parallel_utils/__init__.py
vllm/model_executor/parallel_utils/communication_op.py
vllm/model_executor/parallel_utils/parallel_state.py
vllm/model_executor/parallel_utils/utils.py
vllm/transformers_utils/__init__.py
vllm/transformers_utils/config.py
vllm/transformers_utils/tokenizer.py
vllm/transformers_utils/configs/__init__.py
vllm/transformers_utils/configs/aquila.py
vllm/transformers_utils/configs/baichuan.py
vllm/transformers_utils/configs/chatglm.py
vllm/transformers_utils/configs/cpm.py
vllm/transformers_utils/configs/cpm_mistral.py
vllm/transformers_utils/configs/cpmmistral.py
vllm/transformers_utils/configs/falcon.py
vllm/transformers_utils/configs/mpt.py
vllm/transformers_utils/configs/qwen.py
vllm/transformers_utils/configs/yi.py
vllm/worker/__init__.py
vllm/worker/cache_engine.py
vllm/worker/worker.py
\ No newline at end of file
ninja
psutil
ray>=2.5.1
pandas
pyarrow
sentencepiece
numpy
einops
torch>=2.1.0
transformers>=4.34.0
xformers>=0.0.22.post7
fastapi
uvicorn[standard]
pydantic==1.10.13
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment